
Appendix to:

Distilled Thompson Sampling: Practical and Efficient
Thompson Sampling via Imitation Learning

A Imitation learning with Wasserstein distances

When actions can be naturally embedded in a continuous space, we may want to measure closeness
between the imitation and TS policy by incorporating the geometry of the actions taken by the
respective policies. In this section, we provide an alternative instantiation of the abstract form of
Algorithm 1 that uses Wasserstein distances as the notion of discrepancy D (·, · | s) instead of the KL
divergence. Our previous theoretical development for KL divergences has its analogues here, which
we now briefly outline.

Given a metric d(·, ·) on A, the Wasserstein distance between two distributions q1 and q2 on A is
defined by the optimal transport problem

Dw

�
q1, q2

�
= inf

�2�(q1,q2)
E� [d(A,A0)]

where �(q1, q2) denotes the collection of all probabilities on A⇥A with marginals q1 and q2 (i.e.,
couplings). Intuitively, Dw

�
q1, q2

�
measures how much cost d(A,A0) is incurred by moving mass

away from A ⇠ q1 to A0
⇠ q2 in an optimal fashion. Wasserstein distances encode the geometry of

the underlying space A via the distance d. Unlike the KL divergence Dkl

�
q1||q2

�
that take value 1

whenever q1 has support not contained in q2, the Wasserstein distance allows the imitation policy
to have slightly different support than the Thompson sampling policy. For a discrete action space,
Dw (·, ·) can be defined with any symmetric matrix d(ai, aj) satisfying d(ai, aj) � 0 with 0 iff
ai = aj , and d(ai, aj)  d(ai, ak) + d(ak, aj) for any ai, aj , ak 2 A. As before, to simplify
notation, we let

Dw

�
⇡1,⇡2

| S
�
:= Dw

�
⇡1(· | S),⇡2(· | S)

�

for two policies ⇡1 and ⇡2.

When Algorithm 1 is instantiated with the Wasserstein distance as its notion of discrepancy
D (·, · | S) = Dw (·, · | S), the imitation learning problem (1) becomes

minimize
m2M

ES⇠PS

⇥
Dw

�
⇡TS,⇡m

| S
�⇤

. (4)

To solve the above stochastic optimization problem, we can again use stochastic gradient descent
methods, where the stochastic gradient rmDw

�
⇡TS
t ,⇡m

| S
�

can be computed by solving an optimal
transport problem. From Kantorovich-Rubinstein duality (see, for example, [57]), we have

Dw

�
⇡TS
t ,⇡m

| s
�

= sup
g:A!R

�
EA⇠⇡TS(·|s)g(a)� EA⇠⇡m(·|s)g(a) : g(a)� g(a0)  d(a, a0) for all a, a0 2 A

 
, (5)

where d(·, ·) is the metric on A used to define Dw (·, ·). For discrete action spaces, the maximization
problem (5) is a linear program with O(|A|) variables and constraints; for continuous action spaces,
we can solve the problem over empirical distributions to approximate the optimal transport problem.
We refer the interested reader to Peyré et al. [43] for a comprehensive introduction to computational
methods for solving optimal transport problems.

Letting g? denote the optimal solution to the dual problem (5), the envelope theorem (or Danskin’s
theorem)—see Bonnans and Shapiro [12, Theorem 4.13]—implies that under simple regularity
conditions

rmDw

�
⇡TS
t ,⇡m

| s
�
= �rmEA⇠⇡m(·|s)[g

?(a)].
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Assuming that an appropriate change of gradient and expectation is justified, we can use the policy
gradient trick to arrive at

�rmEA⇠⇡m(·|s)[g
?(A)] = �EA⇠⇡m(·|s)[g

?(A)rm log ⇡m(A | s)].

We conclude that for A ⇠ ⇡m(· | Si),

�g?(A)rm log ⇡m(A | Si) (6)

is a stochastic gradient for the imitation problem (4). As before, we can get lower variance estimates
by average the above estimator over many actions A ⇠ ⇡m(· | Si).

Using stochastic gradients (6), we can solve the imitation problem (4) efficiently. We now show that
the resulting imitation policy admits a regret decomposition similar to Lemma 1 for KL divergences.
As a direct consequence of this decomposition, the regret bounds in Section 4 have their natural
analogues with Wasserstein distances replacing KL divergences as the notion of discrepancy, though
we omit them for brevity.
Lemma 2. Let ⇡ = {⇡t}t2N be any set of policies, and let Ut(·;Ht, St) : A ! R be any upper
confidence bound sequence that is measurable with respect to �(Ht, St, At). For some sequence
Mt(Ht, St) and a constant L > 0, let Ut satisfy

|Ut(a;Ht, St)� Ut(a
0;Ht, St)|  Ld(a, a0) for all a, a0 2 A almost surely. (7)

Then for all T 2 N,

BayesRegret (T, {⇡t}t2N) 
TX

t=1

E[f✓(A?
t , St)� Ut(A

?
t ;Ht, St)] +

TX

t=1

E[Ut(At;Ht, St)� f✓(At, St)]

+ L
TX

t=1

E
⇥
Dw

�
⇡TS
t ,⇡t | St

�⇤
. (8)

where Dw (·, · | ·) is the Wasserstein distance defined with the metric d in the condition (7).

Proof Proof. The proof mirrors that of Lemma 2, but bound the differences (13) by
Dw

�
⇡TS
t ,⇡t | St

�
. By the Kantorovich dual representation (5), we have

E[|Ut(A
TS
t ;Ht, St)� Ut(At;Ht, St)| | Ht, St]  Mt(Ht, St)Dw

�
⇡TS
t ,⇡t | St

�
.

Applying this bound in the decomposition (12), and taking expectation over (Ht, St) on both sides
and summing t = 1, . . . , T , we get the desired bound.

B Contextual Gaussian processes

In this section, we consider the setting where the mean reward function is nonparametric and model
it as a sample path of a Gaussian process. Formally, we assume that (a, s) 7! f✓(a, s) is sampled
from a Gaussian process on A⇥ S with mean function µ(a, s) and covariance function (kernel)

k((a, s), (a0, s0)) := E[(f✓(a, s)� µ(a, s))(f✓(a
0, s0)� µ(a0, s0))].

We assume that the decision maker observes rewards Rt = f✓(At, St) + ✏t, where the noise
✏t

iid
⇠ N(0,�2) are independent of everything else. Given these rewards, we are interested in

optimizing the function a 7! f✓(a, St) for each observed context St at time t. Modeling mean
rewards as a Gaussian process is advantageous since we can utilize analytic formulae to update the
posterior at each step. For large-scale applications, we can parameterize our kernels by a neural
network and leverage the recently developed interpolations techniques to perform efficient posterior
updates [61, 62, 63].

As before, we measure performance by using the Bayes regret, averaging outcomes over the prior P .
We build on the UCB regret bound due to Srinivas et al. [51] and bound the first two terms in the
Bayes regret decomposition (Lemma 1). In particular, we show that they can be controlled by the
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maximal amount of information on the optimal action that can be gained after T time steps. Recall the
definition of mutual information between two random vectors: I(X,Y ) := Dkl (PX,Y ||PX ⇥ PY ).
We define the maximal possible information gain after T time steps as

�T := sup
X✓A⇥S:|X|=T

I(yX , fX)

where yX = {f✓(x)}x2X and fX = {f✓(x)}x2X . For popular Gaussian and Matern kernels, Srinivas
et al. [51] has shown that the maximal information gain can be bounded explicitly; we summarize
these bounds shortly.

Letting A ✓ [0, r]d for some r > 0, we show that the first two terms in the decomposition in Lemma 1
can be bounded by O(d�tT log T ), thus bounding the Bayes regret up to the sum of imitation error
terms. In the following, we use Lf to denote the (random) Lipschitz constant of the map a 7! f✓(a, s)

Lf := sup
s2S

sup
a,a02A

|f✓(a, s)� f✓(a0, s)|

ka� a0k1
.

Theorem 2. Let A ✓ [0, r]d for some r > 0. Assume that
c1 := sup

a2A,s2S
|µ(a, s)| < 1, c2 := sup

a,a02A,s,s02S
k(a, a0) < 1,

and let c3 :=
��supa2A,s2S |f✓(a, s)|

��
2,P

. If E[L2
f ] < 1, then there exists a universal constant

C > 1 such that

BayesRegret (T,⇡)  CE[Lf ] + Cc2 + Cd log(rd)

✓
c1

q
E[Lf ] + c3

q
E[L2

f ]

◆

+

✓
T�T

d log T + d log rd

log(1 + ��2)

◆1/2

+
TX

t=1

(c3 + Cc2d log rdt)
q
2E
⇥
Dkl

�
⇡TS
t ,⇡t | St

�⇤
.

See Section D.4 for the proof.

To instantiate Theorem 2, it remains to bound smoothness of the reward function E[L2
f ], and the

maximal information gain �T . Standard arguments from Gaussian process theory show E[L2
f ] < 1

holds whenever the mean and covariance function (kernel) is smooth, which holds for commonly
used kernels.
Lemma 3 (Theorem 5, Ghosal et al. [24]). If µ(·) and k(·, ·) are 4 times continuously differentiable,
then (a, s) 7! f✓(a, s) is continuously differentiable and follows a Gaussian process again. In
particular, E[L2

f ] < 1.

To obtain concrete bounds on the maximal information gain �T , we use the results of Srinivas et al.
[51], focusing on the popular Gaussian and Matern kernels

kg(x, x
0) := exp

 
�
kx� x0

k
2

2l2

!
,

km(x, x0) :=
21�⌫

�(⌫)
r⌫B⌫(r) where r =

p
2⌫

l
kx� x0

k ,

where we used B(·) and �(·) to denote the Besel and Gamma functions respectively. To ease notation,
we let  denote the dimension of the underlying space, and define

M(kg, T ) := (log T )+1 and M(km, T ) := T
2+

2++2⌫ log T.

We have the following bound on �T for Gaussian and Matern kernels; the bound is a direct conse-
quence of Theorem 2, [32] and Theorem 5, [51].
Lemma 4. Let A ✓ Rd and S ✓ Rd0

be convex and compact. Let the kernel k be given by the sum
of two kernels kA and kS on A and S respectively

k((a, s), (a0, s0)) = kA(a, a
0) + kS(s, s

0).

If kA and kS are either the Gaussian kernel kg or the Matern kernel km with ⌫ > 1, then
�T = O (M(kA, T ) +M(kS , T ) + log T ) .
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For example, taking kA = kg and kS = kg , we conclude

BayesRegret (T, {⇡t}t2N) = O

 q
dT (log T )max{d,d0}+1 + d

TX

t=1

log(rdt)
q

E
⇥
Dkl

�
⇡TS
t ,⇡t | St

�⇤
!
.

C Generalization guarantees for imitation learning

So far, we showed that in order to achieve good regret, it suffices to control the KL-divergence
between the imitation and (off-policy) Thompson sampling policy in order. We now show that each of
these terms can be optimized efficiently using finite-sample approximations; we are interested in how
well the model learned from an empirical approximation of the imitation problem (1) performs with
respect to the true imitation objective (KL divergence). Since we consider the problem for any fixed
time step t, we omit the subscript t and denote ⇡TS = ⇡TS

t . Recalling that N denotes the number of
observed “unlabeled” contexts S1, . . . , SN , we simulate Na number of actions from the (off-policy)
Thompson sampler ATS

ij ⇠ ⇡TS
t (· | Si) j = 1, . . . , Na for each context Si.

Since the imitation learning objective E[Dkl

�
⇡TS,⇡m

| S
�
] is proportional to

�ES,ATS⇠⇡TS(·|S)[log ⇡
m(ATS

| S)], we are interested in solving the following empirical
approximation to the population problem (1)

bmN,Na 2 argmax
m2M

1

N

NX

i=1

1

Na

NaX

j=1

log ⇡m(ATS
ij | Si). (9)

“Unlabeled” contexts without corresponding action-reward information are often cheap and abundant
in internet applications, and we can take N to be very large. For any observed context Si, the actions
ATS

⇠ ⇡TS(· | Si) can be generated by posterior sampling. Since this can be done offline, and is
trivial to parallelize per Si, we can generate many actions; hence we usually have very large Na as
well.

To make our results concrete, we rely on standard notions of complexity to measure the size of
the imitation model class M, using familiar notions based on Rademacher averages. For a sample
⇠1, . . . , ⇠n and i.i.d. random signs (Rademacher variables) "i 2 {�1, 1} that are independent of the
⇠i’s, the empirical Rademacher complexity of the class of functions G ✓ {g : ⌅ ! R} is

Rn(G) := E✏

"
sup
g2G

1

n

nX

i=1

"ig(⇠i)

#
.

For example, when g 2 G takes values in [�M,M ] with VC-subgraph dimension d, a standard bound

is E[Rn(G)] . M
q

d
n ; see Chapter 2 of van der Vaart and Wellner [56] and Bartlett and Mendelson

[9] for a comprehensive treatment.

In what follows, we show that the empirical minimizer bmN,Na achieves good performance optimum
with respect to the population problem (1). More concretely, we show that

E
h
Dkl

⇣
⇡TS,⇡ bmN,Na | S

⌘i
 inf

m2M
E
⇥
Dkl

�
⇡TS,⇡m

| S
�⇤
+N�1/2

⇣
T1(M) +N�1/2

a T2(M)
⌘

where T1(M) and T1(M) are problem-dependent constants that measure the complexity of the
imitation model class M. We show that the dominating dimension-dependent constant T1(M)
term is in a sense the best one can hope for, matching the generalization guarantee available for the
idealized scenario where KL-divergence Dkl

�
⇡TS,⇡m

| Si

�
can be computed and optimized exactly

for each Si, i = 1, . . . , N .

We begin by first illustrating this “best-case scenario”, where we can generate an infinite number of
actions (i.e. Na = 1). We consider the solution bmN,1 to the idealized empirical imitation learning
problem where the KL divergence between the imitation policy and the Thompson sampler can be
computed (and optimized) exactly. Formally, we let

bmN,1 2 argmin
m2M

1

N

NX

i=1

Dkl

�
⇡TS,⇡m

| Si

�
= argmax

m2M

1

N

NX

i=1

EATS⇠⇡TS(·|Si)[log ⇡
m(ATS

| S)].
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The Rademacher complexity of the following set of functions controls generalization performance of
bmN,1

G1 :=
�
s 7! EATS⇠⇡TS(·|s)[log ⇡

m(ATS
| s)] : m 2 M

 
.

Lemma 5. Let bmN,1 be defined as above. If | log ⇡m(a | s)|  M for all a 2 A, s 2 S,m 2 M,
then with probability at least 1� 2e�t

E
h
Dkl

⇣
⇡TS,⇡ bmN,1 | S

⌘i
 inf

m2M
E
⇥
Dkl

�
⇡TS,⇡m

| S
�⇤

+ 4E[RN (G1)] + 2M

r
2t

N
.

This lemma follows from a standard concentration argument, which we present in Section E.1 for
completeness.

We now show that the empirical approximation (9) enjoys a similar generalization performance
as bmN,1, so long as Na is moderately large. To give our result, we define two additional sets of
functions

G2(s) := {a 7! log ⇡m(a | s) : m 2 M}

G3 := {(a, s) 7! log ⇡m(a | s) : m 2 M} .

For G3, we abuse notation slightly and write

RNNaG3 := E✏

2

4 sup
m2M

1

N

nX

i=1

1

Na

NaX

j=1

"ij log ⇡
m(ATS

ij | Si)

3

5

for i.i.d. random signs "ij . The following lemma, whose proof we give in Section E.2, shows that the
empirical solution (9) generalizes at a rate comparable to the idealized model bmN,1.
Theorem 3. Let | log ⇡m(a | s)| 2 M for all a 2 A, s 2 S,m 2 M. Then, with probability at least
1� 3e�t,

E
h
Dkl

⇣
⇡TS,⇡ bmN,Na | S

⌘i
 inf

m2M
E
⇥
Dkl

�
⇡TS,⇡m

| S
�⇤

+ 4E[RN (G1)] + 2M

r
2t

N

+

r
32t

N
sup
s2S

E
ATS

j
iid⇠⇡TS(·|s)

[RNa(G2(s))] + 8E[RNNa(G3)]

Recalling the standard scaling E[Rn(G)] . M
q

d
n , we see that bmN,Na achieves performance

comparable to the idealized solution bmN,1, up to an O(N�1/2N�1/2
a )-error term. Although we

omit it for brevity, boundedness of log ⇡m(a | s) can be relaxed to sub-Gaussianity by using standard
arguments (see, for example, Chapter 2.14 [56]).

We now provide an application of the theorem. Example 1: Let V be a vector space, and V ⇢ V

be any collection of vectors in V . Let k·k be a (semi)norm on V . A collection v1, . . . , vN ⇢ V is an
✏-cover of V if for each v 2 V , there exists vi such that kv � vik  ✏. The covering number of V
with respect to k·k is then

N(V, ✏, k·k) := inf {N 2 N : 9 an ✏-cover of V with respect to k·k} .

Letting G be a collection of functions g : X ! R, a standard argument due to Pollard [44] yields

E"

"
1

n
sup
g2G

nX

i=1

"ig(⇠i)

#
. inf

��0

⇢
� +

1
p
n

q
logN(G, �, k·kL2(Pn)

)

�
(10)

where Pn denotes the point masses on ⇠1, . . . , ⇠n and k·kL2(Pn)
is the empirical L2-norm on functions

g : ⌅ ! [�M,M ].

Let M ⇢ Rdm and assume that m 7! log ⇡m(a | s) is C-Lipschitz with respect to the `2-norm for
all a 2 A, s 2 S so that

| log ⇡m(a | s)� log ⇡m0
(a | s)|  C km�m0

k2 .
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Any ✏-covering {m1, . . . ,mN} of M in `2-norm yields mini | log ⇡m(a | s)� log ⇡mi(a | s)|  C✏
for all m 2 M, a 2 A, s 2 S. This implies that `2-covering numbers of M control L1-covering
numbers of the set of functions G1,G2(s),G3:

max

⇢
N(G1, ✏, L

1), sup
s2S

N(G2(s), ✏, L
1), N(G3, ✏, L

1)

�
 N(M, ✏/C, k·k2) 

✓
1 +

diam(M)C

✏

◆dm

,

where diam(M) = supm,m2M km�m0
k2. In Pollard’s discretization-based bound (10), setting

� = diam(M)CN�1 yields

E[RN (G1)] .
r

dm
N

+
diam(M)C

N
.

Plugging this bound in Lemma 5, the idealized empirical model bmN,1 achieves

E
h
Dkl

⇣
⇡TS,⇡ bmN,1 | S

⌘i
. inf

m2M
E
⇥
Dkl

�
⇡TS,⇡m

| S
�⇤

+

r
dm
N

+
diam(M)C

N
(11)

with probability at least 1� 2e�t, where . denotes an inequality up to some universal constant.

We now show that bmN,Na achieves a similar generalization guarantee as the idealized model bmN,1.
Using the bound (10), we again get

sup
s2S

E
ATS

j
iid⇠⇡TS(·|s)

[RNa(G2(s))] .
r

dm
Na

+
diam(M)C

Na
,

E[RNNa(G3)] .
r

dm
NNa

+
diam(M)C

NNa
.

Applying these bounds to Theorem 3, we see that bmN,Na enjoys the same guarantee (11) as the
“best-case” idealized empirical solution bmN,1 (up to constants). ⇧

D Proof of regret bounds

D.1 Proof of regret decomposition (Lemma 1)

Conditional on (Ht, St), ATS
t has the same distribution as A?

t . Since Ut(a;Ht, St) is a deterministic
function conditional on (Ht, St), we have

E[Ut(A
TS
t ;Ht, St) | Ht, St] = E[Ut(A

?
t ;Ht, St) | Ht, St].

We can rewrite the (conditional) instantenous regret as

E[f✓(A?
t , St)� f✓(At, St) | Ht, St]

= E[f✓(A?
t , St)� Ut(A

?
t ;Ht, St) | Ht, St] + E[Ut(A

TS
t ;Ht, St)� f✓(At, St) | Ht, St]

= E[f✓(A?
t , St)� Ut(A

?
t ;Ht, St) | Ht, St] + E[Ut(At;Ht, St)� f✓(At, St) | Ht, St]

+ E[Ut(A
TS
t ;Ht, St)� Ut(At;Ht, St) | Ht, St]. (12)

We proceed by bounding the gap

E[Ut(A
TS
t ;Ht, St)� Ut(At;Ht, St) | Ht, St] (13)

by the KL divergence between ⇡TS
t and ⇡t. Recall Pinsker’s inequality [55]

kP �QkTV :=
1

2
sup

g:A![�1,1]
|EP [g(A)]� EQ[g(A)]| 

r
1

2
Dkl (P ||Q).

From the hypothesis, Pinsker’s inequality implies

E[|Ut(A
TS
t ;Ht, St)� Ut(At;Ht, St)| | Ht, St]  2Mt(Ht, St)

��⇡TS
t (· | St)� ⇡t(· | St)

��
TV

 Mt(Ht, St)
q

2Dkl

�
⇡TS
t ,⇡t | St

�
.
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Applying this bound in the decomposition (12), and taking expectation over (Ht, St) on both sides
and summing t = 1, . . . , T , we get

BayesRegret (T,⇡) 
TX

t=1

E[f✓(A?
t , St)� Ut(A

?
t ;Ht, St)] +

TX

t=1

E[Ut(At;Ht, St)� f✓(At, St)]

+
TX

t=1

E

Mt(Ht, St)

q
2Dkl

�
⇡TS
t ,⇡t | St

��
.

Applying Cauchy-Schwarz inequality and noting that
p
E[Mt(Ht, St)2]  L, we obtain the final

decomposition.

D.2 Proof of Theorem 1

We begin by defining a few requisite concepts. Recall that a collection v1, . . . , vN is an ✏-cover of a
set V in norm k·k if for each v 2 V , there exists vi such that kv � vik  ✏. The covering number is

N(V, ✏, k·k) := inf {N 2 N | there is an ✏-cover of V with respect to k·k} .

For a class of functions H ⇢ {f : A ⇥ S ! R}, we consider the sup-norm khkL1(X ) :=
supa2A,s2S |h(a, s)|.

We use the notion of eluder dimension proposed by Russo and Van Roy [47], which quantifies the
size of the function class F = {f✓(·, ·) : ✓ 2 ⇥} for sequential decision making problems.
Definition 1. An action-state pair (a, s) 2 (A,S) is ✏-dependent on {(a1, s1), . . . , (an, sn)} ⇢

A⇥ S with respect to F if for any f, f 0
2 F

 
nX

i=1

(f(ai, si)� f 0(ai, si))
2

! 1
2

 ✏ implies f(a, s)� f 0(a, s)  ✏.

We say that (a, s) 2 A⇥ S is ✏-independent of {(a1, s1), . . . , (an, sn)} with respect to F if (a, s) is
not ✏-dependent on {(a1, s1), . . . , (an, sn)}.
Definition 2. The eluder dimension dE(F , ✏) of F is the length of the longest sequence in A ⇥ S

such that for some ✏0 � ✏, every element in the sequence is ✏0-independent of its predecessors.

The eluder dimension bounds the Bayes regret decomposition given in Lemma 1.
Lemma 6 (Russo and Van Roy [47]). Let ⇡ = {⇡t}t�1 be any policy, and F = {(a, s) 7! f✓(a, s) :
✓ 2 ⇥}. Assume f✓(a, s) 2 [�M,M ] for all ✓ 2 ⇥, a 2 A, s 2 S, and Rt � f✓(At, St) is �
sub-Gaussian conditional on (✓, Ht, St, At). When supa2A |Ut(a;Ht, St)|  Mt(Ht, St) holds, we
have

BayesRegret (T,⇡) CdE(F , T�1) + �
q
TdE(F , T�1)(log T + logN(F , T�1, k·kL1(X )))

+ L
TX

t=1

q
2E
⇥
Dkl

�
⇡TS
t ,⇡t | St

�⇤
,

and when condition (7) holds, we have

BayesRegret (T,⇡) CdE(F , T�1) + �
q
TdE(F , T�1)(log T + logN(F , T�1, k·kL1(X )))

+ L
TX

t=1

E
⇥
Dw

�
⇡TS
t ,⇡t | St

�⇤
.

for some constant C > 0 that only depends on M .

From Lemma 6, it suffices to bound the covering number and the eluder dimension of the linear
model class

F = {(a, s) 7! g(h�(a, s), ✓i) : ✓ 2 ⇥} .
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Since ✓ 7! g(h�(a, s), ✓i) is c2-Lipschitz with respect to k·k2, a standard covering argument (e.g.
see Chapter 2.7.4 of van der Vaart and Wellner [56]) gives

N
⇣
H, ✏, k·kL1(X )

⌘
 N

✓
⇥,

✏

c2
, k·k

◆


✓
1 +

2c1c2
✏

◆d

.

Proposition 11, Russo and Van Roy [47] shows that

dE(F , T�1)  Cdr2 log rT

for some constant C that depends only on c1 and c2. Using these bounds in Lemma 6, we obtain the
result.

D.3 Explicit regret bounds for linear bandits

In the case of linear bandits, we can use a more direct argument that leverage the rich analysis of
UCB algorithms provided by previous authors [17, 1, 2], instead of the eluder dimension argument
used to show Theorem 1.

Instead of bounding the eluder dimension, we can directly bound the upper confidence bounds in the
decomposition in Lemma 1. By using the regret analysis of Dani et al. [17], Abbasi-Yadkori et al.
[1, 2] for UCB algorithms, we obtaint he following result for linear contextual bandits.
Lemma 7. Let � : A⇥ S ! R such that f✓(a, s) = �(a, s)>✓ for all ✓ 2 ⇥. Let c1, c2,� > 0 be
such that

sup
✓2⇥

k✓k2  c1, sup
a2A,s2S

k�(a, s)k2  c2,

and assume that Rt�f✓(At, St) is �-sub-Gaussian conditional on (✓, Ht, St, At). Then, there exists
a constant C that depends on c1, c2,� such that

BayesRegret (T, {⇡t}t2N) 2

 
(c1 + 1)c1 + �

s

d+ log
p

T

✓
1 +

c22T

�

◆!s

2Td log

✓
�+

Tc22
d

◆

+ 4c1c2
p

T + c1c2

TX

t=1

q
2E
⇥
Dkl

�
⇡TS
t ,⇡t | St

�⇤
(14)

Furthermore, if a 7! �(a, s) is L-Lipschitz with respect to a metric d, then the same bound holds with
L
PT

t=1 E
⇥
Dw

�
⇡TS
t ,⇡t | St

�⇤
replacing the last sum, where Dw (·, · | ·) is the Wasserstein distance

defined with the metric d.

Although we omit it for brevity, the above O(
p
dT log T ) regret bound can be improved to

Õ(E[
p
k✓k0 dT ]) by using a similar argument as below (see Proposition 3, [47] and [2]).

Proof

Lemma 7 follows from a direct consequence of Lemma 1, and Dani et al. [17], Abbasi-Yadkori et al.
[1]; we detail it below for completeness. We first show the bound (14). Letting Lt(a;Ht, St) be
an arbitrary sequence of measurable functions denoting lower confidence bounds, the Bayes regret
decomposition in Lemma 1 implies

BayesRegret (T,⇡) 
TX

t=1

E[Ut(At;Ht, St)� Lt(At;Ht, St)]

+ 2c1c2

TX

t=1

n
P(f✓(At, St)  Lt(At;Ht, St)) + P(f✓(A?

t , St) � Ut(A
?
t ;Ht, St))

o

+ L
TX

t=1

q
2E
⇥
Dkl

�
⇡TS
t ,⇡t | St

�⇤
. (15)

We proceed by bounding the first and second sum in the above inequality.
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To ease notation, for a fixed � � 1 _ c22 define

Xt :=

2

64
�(A1, S1)>

t
...

�(At, St)>

3

75 , Yt :=

2

64
R1
...
Rt

3

75 , Vt := �I +
tX

k=1

�(Ak, Sk)�(Ak, Sk)
>

for all t 2 N, and we let V0 := �I . We use the following key result due to Dani et al. [17], Abbasi-
Yadkori et al. [1].
Lemma 8 (Theorem 2, Abbasi-Yadkori et al. [1]). Under the conditions of the proposition, for any
� > 0

P
 ���✓ � b✓t

���
Vt



p

�c1 + �

s

d

✓
log

1

�
+ log

✓
1 +

c22t

�

◆◆
=: �t(�) for all t � 0

��� ✓
!

� 1� �

where we used k✓kA :=
p

✓>A✓.

To instantiate the decomposition (15), we let

Ut(a;Ht, St) := sup
✓0:k✓0�b✓t�1k

Vt�1
�t�1(�)

�(a, St)
>✓0,

Lt(a;Ht, St) := inf
✓0:k✓0�b⇥t�1k

Vt�1
�t�1(�)

�(a, St)
>✓0.

We are now ready to bound the second term in the decomposition (15). On the event

E :=

⇢���✓ � b✓t
���
Vt

 �t(�) for all t � 0

�
,

we have f✓(At, St) � Lt(At;Ht, St) and f✓(A?
t , St)  Ut(A?

t ;Ht, St) by definition. Since
Lemma 8 states P(E | ✓) � 1 � �, we conclude that the second sum in the decomposition (15) is
bounded by 4c1c2T �.

To bound the first sum in the decomposition (15), we use the following bound on the norm of feature
vectors.
Lemma 9 (Lemma 11, Abbasi-Yadkori et al. [1]). If � � c22 _ 1, for any sequence of at, st for t � 1,
and corresponding At := �I +

Pt
k=1 �(ak, sk)�(ak, sk)

>, we have

TX

t=1

k�(At, St)k
2
V �1
t�1

 2d log

✓
�+

Tc22
d

◆
.

Noting that by definition

Ut(At;Ht, St)� Lt(A;Ht, St)  2 k�(At, St)kV �1
t�1

�t�1(�),

we obtain
TX

t=1

Ut(At;Ht, St)� Lt(A;Ht, St)  2
TX

t=1

k�(At, St)kV �1
t�1

�t�1(�)

(a)
 2�T (�)

TX

t=1

k�(At, St)kV �1
t�1

(b)
 2�T (�)

vuutT
TX

t=1

k�(At, St)k
2
V �1
t�1

(c)
 2�T (�)

s

2Td log

✓
�+

Tc22
d

◆
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where we used monotonicity of t 7! �t(�) in step (a), Cauchy-Schwarz inequality in step (b), and
Lemma 9 in step (c).

Collecting these bounds, we conclude

BayesRegret (T,⇡) 2�T (�)

s

2Td log

✓
�+

Tc22
d

◆
+ 4c1c2T �

+ L
TX

t=1

q
2E
⇥
Dkl

�
⇡TS
t ,⇡t | St

�⇤
.

Setting � = 1/
p
T , we obtain the first result. The second result is immediate by starting with the

decomposition (8) and using an identical argument.

D.4 Proof of Theorem 2

In what follows, we abuse notation and let C be a universal constant that changes line by line. Since
f✓(a, s) follows a Gaussian process, its posterior mean and variance is given by

µt(a, s) := E[f✓(a, s) | Ht] = kt(a, s)
>(Kt + �2I)�1yt,

�2
t (a, s) := Var(f✓(a, s) | Ht) = k((a, s), (a, s))� kt(a, s)

>(Kt + �2I)�1kt(a, s)

where kt(a, s) := [k((Aj , Sj), (a, s))]1jt, Kt := [k((Ai, Si), (Aj , Sj))]1i,jt and yt =
[rj ]1jt. Define the upper confidence bound

Ut(a;Ht, s) := µt(a, s) +
p
�t�t(a, s)

where �t = 2 log((t4rd)dt2). Noting that

|Ut(a;Ht, s)|  sup
a2A,s2S

|E [f✓(a, s) | Ht]|+
p
�tk((a, s), (a, s))  E


sup

a2A,s2S
|f✓(a, s)|

��� Ht

�
+
p
�tc2,

a minor modification to the proof of Lemma 1 yields

BayesRegret (T,⇡) 
TX

t=1

E[f✓(A?
t , St)� Ut(A

?
t ;Ht, St)] +

TX

t=1

E[Ut(At;Ht, St)� f✓(At, St)]

+
TX

t=1

 ����E


sup
a2A,s2S

|f✓(a, s)|
��� Ht

�����
2,P

+
p

�tc2

!q
2E
⇥
Dkl

�
⇡TS
t ,⇡t | St

�⇤
.

(16)

From Jensen’s inequality and the tower property,
����E


sup
a2A,s2S

|f✓(a, s)|
��� Ht

�����
2,P



���� sup
a2A,s2S

|f✓(a, s)|

����
2,P

= c3.

From Borell-TIS inequality (e.g., see [4]), we have c3 < 1.

We now proceed by bounding the first two terms in the regret decomposition (16). Let At be a
(1/t4)-cover of A, so that for any a 2 A, there exists [a]t 2 At such that ka� [a]tk1  1/t4.
Since |At|  (t4rd)d, we have 2 log(|At|t2)  �t. We begin by decomposing the first term in the
decomposition.
TX

t=1

f✓(A
?
t , St)� Ut(A

?
t ;Ht, St) =

TX

t=1

E[f✓(A?
t , St)� f✓([A

?
t ]t, St)]

| {z }
(a)

+
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t ]t, St)� Ut([A

?
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+
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E[Ut([A
?
t ]t;Ht, St)� Ut(A

?
t ;Ht, St)]

| {z }
(c)

.
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Using the definition of Lf , the first term (a) in the above equality is bounded by
TX

t=1

E[f✓(A?
t , St)� f✓([A

?
t ]t, St)]  E[Lf ]

TX

t=1

kA?
t � [A?

t ]tk1  E[Lf ]
1X

t=1

1

t4
 CE[Lf ]

where we used the fact that At is a 1/t4-cover of A. To bound the second term (b), note that since
f✓(a, s) | Ht ⇠ N(µt(a, s),�2

t (a, s)), we have

E[f✓(a, s)� Ut(a;Ht, s) | Ht]  E[(f✓(a, s)� Ut(a;Ht, s))+ | Ht] =
�t(a, s)
p
2⇡

e�
�t
2 

c2
p
2⇡t2|At|

.

(17)

Hence, we obtain the bound
TX

t=1

E[f✓([A?
t ]t, St)� Ut([A

?
t ]t;Ht, St)] 

TX

t=1

X

a2At

E[f✓(a, St)� Ut(a;Ht, St)] 
1X

t=1

c2
p
2⇡t2

 Cc2

where we used the independence of St and Ht, and the bound (17).

To bound the third term (c), we show the claim

|Ut(a;Ht, s)� Ut(a
0;Ht, s)|  E[Lf | Ht] ka� a0k1 (18)

+
p

�t

✓
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✓
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a2A,s2S
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a2A,s2S
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2

◆
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�◆ 1
2
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1
2
1 .

From the above claimed bound, it follows that
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?
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t2

 CE[Lf ] + Cd log(rd)

✓
c1

q
E[Lf ] + c3

q
E[L2

f ]

◆
.

To show the bound (18), first note that a 7! E[f✓(a, s) | Ht] and a 7! E[f✓(a, s)2 | Ht] is E[Lf | Ht]-
and E[2Lf supa2A,s2S |f✓(a, s)| | Ht]- Lipschitz respectively, for all s 2 S. Hence, a 7! �2

t (a, s)
is E[2Lf (c21 + supa2A,s2S |f✓(a, s)|2) | Ht]-Lipschitz. Noting that

|�t(a, s)� �t(a
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����
�2
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0, s)

�t(a, s) + �t(a0, s)

���� 
1

c
|�2

t (a, s)� �2
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0, s)|+ c

for any c > 0, taking the infimum over c > 0 on the right hand side yields

|�t(a, s)� �t(a
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t (a, s)� �2
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
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�◆ 1
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which shows the bound (18).

Collecting these bounds, we have shown that
TX

t=1

E[f✓(A?
t , St)� Ut(A

?
t ;Ht, St)]  CE[Lf ] + Cc2 + Cd log(rd)

✓
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(19)

To bound the second term in the Bayes regret decomposition (16), we use the following lemma due
to Srinivas et al. [51].
Lemma 10 (Lemma 5.3 Srinivas et al. [51]). For any sequence of At and St,

E
 

TX

t=1

�t(At, St)
2

! 1
2



s
2�T

log(1 + ��2)
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Using the lemma, we have

TX

t=1

E[Ut(At;Ht, St)� f✓(At, St)] =
TX

t=1

p
�tE[�t(At, St)] 

p
T�T

s
2�T

log(1 + ��2)
.

Combining this with the bound (19), we obtain our result.

E Proof of generalization results

E.1 Proof of Lemma 5

We use the following standard concentration result based on the bounded differences inequality and a
symmetrization argument; see, for example, [13, 58, 14]. We denote by bPn the empirical distribution
constructed from any i.i.d. sample Xi ⇠ P .
Lemma 11. If |g|  M for all g 2 G, then with probability at least 1� 2e�t

sup
g2G

|E[g(X)]� E bPn
[g(X)]|  2E[Rn(G)] +M
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n
.

Noting that for any m 2 M
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where we used the fact that bmN,1 maximizes 1
N

PN
i=1 EATS⇠⇡TS(·|Si)[log ⇡

m(ATS
| Si)] in the last

inequality. Applying Lemma 11 with G = G1 and taking the infimum over m 2 M, we obtain the
result.

E.2 Proof of Theorem 3

We begin by noting that

E
h
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Since bmN,Na maximizes 1
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1
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j=1 log ⇡
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ij | Si), the preceeding display can be
bounded by
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We proceed by separately bounding the two terms in the inequality (20). From Lemma 11, the second
term is bounded by

4E[RN (G1)] + 2M
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with probability at least 1� 2e�t. To bound the first term
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consider the Doob martingale

Mk := E[ZN,Na | S1, . . . , Sk] for 1  k  N

with M0 = E[ZN,Na ], which is martingale adapted to the filtration Fk := �(S1, . . . , Sk). Denote the
martingale difference sequence Dk = Mk �Mk�1 for k � 1. Let S̄k be an independent copy of Sk

that is independent of all Si, ATS
ij for i 6= k, and let ĀTS
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Thus, we arrive at the bound independence of Si’s yields
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where S̄k is an independent copy of Sk, and similarly ĀTS
kj

iid
⇠ ⇡TS(· | S̄k).

Next, we use a standard symmetrization result to bound the preceding display; see, for example,
Chapter 2.3, van der Vaart and Wellner [56] for a comprehensive treatment.
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Lemma 12. If Xi
iid
⇠ P , we have
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It now remains to bound E[ZN,Na ], for which we use a symmetrization argument. Although (Si, ATS
ij )

are not i.i.d., a standard argument still applies, which we outline for completeness. Denoting by
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Collecting these bounds, we conclude that with probability 1 � 3e�t, the right hand side of the
inequality (20) is bounded by

4E[RN (G1)] + 2M

r
2t

n
+

r
32t

N
sup
s2S

E
ATS

j
iid⇠⇡TS(·|s)

[RNa(G2(s))] + 8E[RNNa(G3)].

F Experiment Details

F.1 Hyperparameters

We use hyperparameters from Riquelme et al. [45] as follows. The NEURALGREEDY, NEU-
RALLINEARTS methods use a fully-connected neural network with two hidden layers of containing
100 rectified linear units. The networks are multi-output, where each output corresponds for pre-
dicted reward under each action. The networks are trained using 100 mini-batch updates at each
period to minimize the mean-squared error via RMSProp with an initial learning rate of 0.01. The
learning rate is decayed after each mini-batch update according to an inverse time decay schedule
with a decay rate of 0.55 and the learning rate is reset the initial learning rate each update period.
For BOOTSTRAP-NN-TS, we use 10 replicates and train each replicate with all observations as in
Riquelme et al. [45].

The Bayesian linear regression models used on the last linear layer for NEURALLINEAR-TS use
the normal inverse gamma prior NIG(µa = 0,↵a = 3,�a = 3,⇤a = 0.25Id). LINEAR-TS uses a
NIG(µa = 0,↵a = 6,�a = 6,⇤a = 0.25Id) prior distribution.

The imitation models used by the IL methods are fully-connected neural networks with two hidden
layers of 100 units and hyperbolic tangent activations. The networks use a Softmax function on
the outputs to predict the probability of selecting each action. The networks are trained using 2000
mini-batch updates via RMSProp to minimize the KL-divergence between the predicted probabilities
and the approximate propensity scores of the Thompson sampling policy ⇡TS . For each observed
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context Si, we approximate the propensity scores of the Thompson sampling policy ⇡TS(·|Si) using
Na = 2048 Monte Carlo samples: ⇡̂TS(a|Si) =

1
Na

PNa

j=1 (Aij = a) where Aij ⇠ ⇡TS(·|Si). We
use an initial learning rate of 0.001. learning rate is decayed every 100 mini-batches according to
an inverse time decay schedule with a decay rate of 0.05. In practice, the hyperparameters of the
imitation model can be optimized or adjusted at each update period by minimizing the KL-divergence
on a held-out subset of the observed data, which may lead to better regret performance. We do not
use inverse propensity-weighting on the observations, but we suspect that may it may further improve
performance.

Data preprocessing We normalize all numeric features to be in [0,1] and one-hot encode all categor-
ical features. For the Warfarin dataset, we also normalize the rewards to be in [0,1].

F.2 Posterior Inference for Bayesian Linear Regression

LINEAR-TS: For each action, We assume the data for action a were generated from the linear
function: ra = sT✓a + " where " ⇠ N (0,�2

a).

�2
a ⇠ IG(↵a,�a), ✓a|�

2
a ⇠ N (µa,�

2
a⌃a),

where the prior distribution is given by NIG(µa,⇤a,↵a,�a) and ⇤a = ⌃�1
a is the precision matrix.

After na observations of contexts Xa 2 Rna⇥(d+1) and rewards ya 2 Rna⇥1, we denote the joint
posterior by P (✓a,�2

a) ⇠ NIG(µ̄a, ⇤̄a, ↵̄a, �̄a), where

⇤̄ = XT
a Xa + ⇤a, µ̄a = ⇤̄�1

a (⇤aµa +XT
a ya)

↵̄a = ↵+
na

2
, �̄a = � +

1

2
(yT

a ya + µT
a⇤aµa � µ̄T

a ⇤̄aµ̄a).

F.3 Benchmark Problem Datasets

Mushroom UCI Dataset: This real dataset contains 8,124 examples with 22 categorical valued
features containing descriptive features about the mushroom and labels indicating if the mushroom
is poisonous or not. With equal probability, a poisonous mushroom may be unsafe and hurt the
consumer or it may be safe and harmless. At each time step, the policy must choose whether to
eat the new mushroom or abstain. The policy receives a small positive reward (+5) for eating a
safe mushroom, a large negative reward (-35) for eating an unsafe mushroom, and zero reward for
abstaining. We one-hot encode all categorical features, which results in 117-dimesional contexts.

Pharamcological Dosage Optimization Warfarin is common anticoagulant (blood thinner) that
is prescribed to patients with atrial fibrillation to prevent strokes [65]. The optimal dosage varies
from person to person and prescribing the incorrect dosage can have severe consequences. The
Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB) includes a dataset with a
17-dimensional feature set containing numeric features including age, weight, and height, along with
one-hot encoded categorical features indicating demographics and the presence of genetic markers.
The dataset also includes the optimal dosage for each patient refined by physicians over time. We use
this supervised dataset as a contextual bandit benchmark using the dosage as the action and defining
the reward function to be the distance between the selected dosage and the optimal dosage. We
discretize the action space into 20 (or 50) equally spaced dosage levels.

Wheel Bandit Problem The wheel bandit problem is a synthetic problem specifically designed
to require exploration [45]. 2-dimensional contexts are sampled from inside the unit circle with
uniform random probability. There are 5 actions where one action always has a mean reward of
E[r(s, a1)] = 1.2 independent of the context, and the mean rewards of the other actions depend
on the context. If ||s||2  �, then the other 4 actions are non-optimal with a mean reward of 1. If
||s||2 > �, then 1 of the 4 remaining actions is optimal—and determined by the sign of the two
dimensions of s —with a mean reward of 50. The remaining 3 actions all have a mean reward of 1.
All rewards are observed with zero-mean additive Gaussian noise with standard deviation � = 0.01.
We set � = 0.95, which means the probability of a sampling a context on the perimeter (||s||2 � �)
where one action yields a large reward is 1� (0.95)2 = 0.0975.

Real World Video Upload Transcoding Optimization We demonstrate performance of the imita-
tion learning algorithm on a real world video upload transcoding application. At each time step, the
policy receives a request to upload a video along with contextual features and the policy is tasked
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Figure 2: Cumulative regret on the Warfarin problem with 50 actions

with deciding how the video should be transcoded (e.g. what quality level to use) when uploading
the video to the service. It is preferable to upload videos at a high quality because it can lead to a
better viewer experience (if the viewer has a sufficiently good network connection). However, higher
quality videos have larger file sizes. Uploading a large file is more likely to to fail than uploading a
small file; uploading a larger file takes more time, which increases the likelihood that the network
connection will drop or that person uploading the video will grow frustrated and cancel.

The contextual information accompanying each video includes dense and sparse features about: the
video file (e.g. the raw bitrate, resolution, and file size) and the network connection (e.g. connection
type, download bandwidth, country). There are 7 actions corresponding to a unique (resolution,
bitrate) pairs. The actions are ranked ordered in terms of quality: action i yields a video with higher
quality than action j if and only if i � j. The reward for a successful upload is a positive and
monotonically increasing function of the action. The reward for a failed upload is 0.

We evaluate the performance of different contextual bandit algorithms using the unbiased, offline,
policy evaluation technique proposed by Li et al. [34]. The method evaluates a CB algorithm by
performing rejection sampling on a stream of logged observation tuples of the form (xt, at, rt)
collected under a uniform random policy. Specifically, the observation tuple t is rejected if the logged
action does not match the action selected by the CB algorithm being evaluated. For this demonstration
we leverage a real video upload transcoding dataset containing 8M observations logged under a
uniform random policy. We evaluate each algorithm using the stream of logged data until each
algorithm has “observed" T = 50, 000 valid time steps.

F.4 Additional Results

Warfarin - 50 Actions Figure 2 shows the cumulative regret on Warfarin using 50 actions. The
imitation learning methods match the cumulative regret of the vanilla Thompson sampling methods.

G Time and Space Complexity

G.1 Complexity of Evaluated Methods

Table 2 shows the decision-making time complexity for the methods used in our empirical analysis.
The time complexity is equivalent to the space complexity for all evaluated methods.

NEURALGREEDY The time complexity of NEURALGREEDY is the sum of matrix-vector multiplica-
tions involved in a forward pass.

LINEAR-TS The time complexity of LINEAR-TS is dominated by sampling from the joint posterior,
which requires sampling from a multivariate normal with dimension d. To draw a sample from the
joint posterior P (✓,�) at decision time, we first sample the noise level �̃2

⇠ IG(↵,�) and then
sample ✓̃|�̃2

⇠ N
�
µ, �̃2⇤�1

�
. Rather than inverting the precision matrix ⌃̃ = �̃2⇤�1, we compute

root decomposition (e.g. a Cholesky decomposition) of the d⇥ d precision matrix ⇤ = LLT . The
root decomposition can be computed once, with cost O(d3), after an offline batch update and cached
until the next batch update. Given LT , we sample directly by computing ✓̃ = µ+ z, where

1

�̃
LTz = ⇣ (21)
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and ⇣
iid
⇠ N (0, 1). Since LT is upper triangular, Eqn. (21) can be solved using a backward substitution

in quadratic time: O(d2).2

NEURALLINEAR-TS The time complexity of NEURALLINEAR-TS is the sum of a forward pass up
to the last hidden layer and sampling from a multivariate normal with dimension hM , where hM is
the size of the last hidden layer.

IL The IL methods have the same time complexity as NEURALGREEDY, ignoring the cost of
sampling from multinomial with k categories.

G.2 Complexity Using Embedded Actions

An alternative modeling approach for the non-imitation methods is to embed the action with the
context as input to the reward model.

NEURALGREEDY Using an embedded action, the time complexity for a forward pass up to the last
layer is Olast-layer = O

�
kdah1 + k

PM�1
m=1 hmhm+1

�
because the input at decision time is a k ⇥ da

matrix where the context is embedded with each of the k actions and the each context-action vector
has dimension da. The time complexity of computing the output layer remains O(khM ). The space
complexity remains linear in the number of parameters, but it also requires computing temporary
intermediate tensors of size k ⇥ hm for m = 1...M : O

�
dah1 +

PM�1
m=1 hmhm+1 +

PM
m=1 khm

�
.

LINEAR-TS Linear-TS with an embedded action only requires using a single sample of the parame-
ters, which yields a complexity of to O(d2a + kda) for LINEAR-TS. The space complexity is also
O(d2a + kda).

NEURALLINEAR-TS For NEURALLINEAR-TS the time complexity of computing the outputs given
the last hidden layer is O(h2

M + khM ), since only a single sample of hM parameters is required for
computed the reward for all actions. The space complexity for NEURALLINEAR-TS the sum the
space complexities of NEURALGREEDY and LINEAR-TS.

IL The computatiuonal cost of the IL methods would be unchanged.

We choose to empirically evaluate models without embedded actions because linear methods using
embedded actions cannot model reward functions that involve non-linear interactions between
the contexts and actions, whereas modeling each action independently allows for more flexibility.
Riquelme et al. [45] find that Thompson sampling using disjoint, exact linear bayesian regressions are
a strong baseline in many applications. Furthermore, Riquelme et al. [45] observe that it is important
to model the noise levels independently for each action.

G.3 Complexity of Alternative Methods

Alternative Thompson sampling methods including mean-field approaches, the low-rank approxi-
mations of the covariance matrix, and bootstrapping can also decrease the computational cost of
posterior sampling. Mean-field approaches can reduce time complexity of sampling parameters
from the posterior from quadratic O(n2) to linear O(n) in the number of parameters n.3 However,
assuming independence among parameters has been observed to result in worse performance in some
settings [45]. Low-rank approximations of the covariance matrix allow for sampling parameters in
O((n + 1)⇢), where ⇢ is the rank of the approximate covariance, but such methods have a space
complexity of O(⇢n) since they require storing ⇢ copies of the parameters [66, 36]. Bootstrapping
also requires storing multiple copies of the parameters, so the space is O(bn) where b is the number
of bootstrap replicates. However, bootstrapping simply requires a multinomial draw to select one set
of bootstrapped parameters. All these methods require a forward pass using the sampled parameters,
and the time complexity is the sum of the time complexities of sampling parameters and the forward
pass.

2The alternative approach of inverting the precision matrix to compute the covariance matrix ⌃ = ⇤�1,
computing and caching its root decomposition ⌃ = L⌃L

T
⌃, and sampling ✓̃ as ✓̃ = µ+L⌃⇣, where ⇣ iid⇠ N (0, 1)

also has a time complexity of O(d2) from the matrix-vector multiplication L⌃⇣.
3We describe space complexity in terms of the number of parameters n, so that we do not make assumptions

about the underlying model.
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Table 2. Decision-making time complexity and space complexity for each method . For methods relying
on fully-connected neural networks, the time complexity of a forward pass to the last hidden layer is
Clast-layer = dh1 +

PM�1
m=1 hmhm+1, where d is the dimension of the context and hm is the number

of units in hidden layer m. For BOOTSTRAP-NN-TS, B denotes the number of bootstrap replicates.
METHOD TIME COMPLEXITY SPACE COMPLEXITY

NEURALGREEDY O(CLAST-LAYER) +O(khM ) O(CLAST-LAYER) +O(khM )
LINEAR-TS O(kd2) O(kd2)
NEURALLINEAR-TS O(CLAST-LAYER) +O

�
kh

2
M ) O(CLAST-LAYER) +O

�
kh

2
M )

BOOTSTRAP-NN-TS O(CLAST-LAYER) +O(khM ) O(CLAST-LAYER ·B) +O(khMB))
IL O(CLAST-LAYER) +O(khM )
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