
Appendix

A Technical lemmas

Lemma A.1 (Multiplicative Chernoff bound Chernoff et al. (1952)). Let X be a Binomial random
variable with parameter p, n. For any � > 0, we have that

P[X < (1� �)pn] <

✓
e��

(1� �)1��

◆np

.

A slightly looser bound that suffices for our propose:

P[X < (1� �)pn] < e�
�
2
pn

2 .

Lemma A.2 (Hoeffding’s Inequality Sridharan (2002)). Let x1, ..., xn be independent bounded
random variables such that E[xi] = 0 and |xi|  ⇠i with probability 1. Then for any ✏ > 0 we have

P
 
1

n

nX

i=1

xi � ✏

!
 e

� 2n2
✏
2

P
n

i=1 ⇠
2
i .

Lemma A.3 (Bernstein’s Inequality). Let x1, ..., xn be independent bounded random variables such
that E[xi] = 0 and |xi|  ⇠ with probability 1. Let �2 = 1

n

P
n

i=1 Var[xi], then with probability
1� � we have

1

n

nX

i=1

xi 
r

2�2 · log(1/�)
n

+
2⇠

3n
log(1/�)

Lemma A.4 (Mcdiarmid’s Inequality (Sridharan, 2002)). Let x1, ..., xn be independent random
variables and S : Xn ! R be a measurable function which is invariant under permutation and let
the random variable Z be given by Z = S(x1, x2, ..., xn). Assume S has bounded difference: i.e.

sup
x1,...,xn,x

0
i

|S(x1, ..., xi, ..., xn)� S(x1, ..., x
0
i
, ..., xn)|  ⇠i,

then for any ✏ > 0 we have

P(|Z � E[Z]| � ✏)  2e
� 2✏2P

n

i=1 ⇠
2
i .

Lemma A.5 (Azuma-Hoeffding inequality). Suppose Xk, k = 1, 2, 3, ... is a martingale and |Xk �
Xk�1|  ck almost surely. Then for all positive integers N and any ✏ > 0,

P(|XN �X0| � ✏)  2e
� ✏

2

2
P

N

i=1 c
2
i .

Lemma A.6 (Freedman’s inequality Tropp et al. (2011)). Let X be the martingale associated
with a filter F (i.e. Xi = E[X|Fi]) satisfying |Xi � Xi�1|  M for i = 1, ..., n. Denote
W :=

P
n

i=1 Var(Xi|Fi�1) then we have

P(|X � E[X]| � ✏,W  �2)  2e
� ✏

2

2(�2+M✏/3) .

Or in other words, with probability 1� �,

|X � E[X]| 
p
8�2 · log(1/�) + 2M

3
· log(1/�), Or W � �2.

Lemma A.7 (Best arm identification lower bound Krishnamurthy et al. (2016)). For any A � 2 and
⌧ 

p
1/8 and any best arm identification algorithm that produces an estimate â, there exists a

multi-arm bandit problem for which the best arm a? is ⌧ better than all others, but P[â 6= a?] � 1/3
unless the number of samples T is at least A

72⌧2 .
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B On error metric for OPE

In this section, we discuss the metric considered in this work. Traditionally, most works directly use
Mean Square Error (MSE) E[(bv⇡ � v⇡)2] as the criterion for measuring OPE methods e.g. Thomas
& Brunskill (2016); Thomas (2015); Thomas et al. (2017); Farajtabar et al. (2018), or equivalently,
by proposing unbiased estimators and discussing its variance e.g. Jiang & Li (2016). Alternately, one
can consider bounding the absolute difference between v⇡ and bv⇡ with high probability (e.g. Duan
et al. (2020)), i.e. |bv⇡ � v⇡|  ✏prob w.h.p. Generally speaking, high probability bound can be seen
as a stricter criterion compared to MSE since

E[(bv⇡ � v⇡)2] = E[(bv⇡ � v⇡)21E ] + E[(bv⇡ � v⇡)21Ec ]

 ✏prob(�)
2 · (1� �) +H2 · �,

where E is the event that ✏prob error holds and � is the failure probability. As a result, if both � and
✏prob(�) can be controlled small, then the high probability bound implies a result for MSE bound.
This is realistic, since � mostly appears inside the logarithmic term of ✏prob(�) so the second term
can be scaled to sufficiently small without affecting the polynomial dependence for the first term.

Table 2: Summary of Uniform OPE results for H-horizon non-stationary setting

Method/Analysis Policy class Guarantee Sample complexity

Simulation Lemma All policies ✏-uniform convergence O(H4S2/dm✏2)
Theorem 3.1 All policies ✏-uniform convergence O(H4S/dm✏2)
Theorem 3.3 All deterministic policies ✏-uniform convergence O(H3S/dm✏2)
Theorem 3.4 local policies ✏-uniform convergence O(H3/dm✏2)
Minimax lower bound (Theorem 3.5) ————— over class Mdm

⌦(H3/dm✏2)

C Some preparations

In this section we present some results that are critical for proving the main theorems.
Lemma C.1. For any 0 < � < 1, there exists an absolute constant c1 such that when total episode
n > c1 · 1/dm · log(HSA/�), then with probability 1� �,

nst,at
� n · dµ

t
(st, at)/2, 8 st, at.

If state st is not accessible, then nst,at
= dµ

t
(st, at) = 0 so the lemma holds trivially.5

Proof of Lemma C.1. Define E := {9t, st, at s.t. nst,at
< ndµ

t
(st, at)/2}. Then combining the

multiplicative Chernoff bound (Lemma A.1 in the Appendix) and a union bound over each t,st and
at, we obtain

P[E] 
X

t

X

st

X

at

P[nst,at
< ndµ

t
(st, at)/2]

 HSA · e�
n·mint,st,at

d
µ

t
(st,at)

8 = HSA · e�
n·dm

8 := �

solving this for n then provides the stated result.

Now we define: N := mint,st,at
nst,at

, then above implies N � ndm/2 (recall dm in Assump-
tion 2.2). Now we aggregate only the first N pieces of data in each state-action (st, at)6 of off-policy
data D and they consist of a new dataset D0 = {(st, at, s(i)t+1, r

(i)
t
) : i = 1, ..., N ; t 2 [H]; st 2

S, at 2 A}, and is a subset of D. For the rest of paper, we will use either D0 or the original D to
create OPEMA bv⇡ (only for theoretical analysis purpose). Whether D or D0 is used will be stated
clearly in each context.

5In general, non-accessible state will not affect our results so to make our presentation succinct we will not
mention non-accessible state for the rest of paper unless necessary.

6Note we can do this since by definition N  nst,at
for all st, at.
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Remark C.2. It is worth mentioning that when use D0 to construct bv⇡ , nD0

st,at
= N for all st, at. Also,

N := minnD
st,at

(note nD
st,at

is the count from D) itself is a random variable and in the extreme case
we could have N = 0 and if that happens bv⇡ = 0 (since in that case bPt ⌘ 0 and bd⇡

t
is degenerated).

However, there is only tiny probability N will be small, as guaranteed by Lemma C.1.

We wanted to point out that this technique of dropping certain amount of data, is not uncommon
for analyzing model-based method in RL: e.g. Rmax exploration (Brafman & Tennenholtz, 2002)
for online episodic setting (see [Jiang (2018), Notes on Rmax exploration] Section 2 Algorithm for
tabular MDP. The data they use is the “known set” K with parameter m, in step3 data pairs observed
more than m times are not recorded).

C.1 Fictitious OPEMA estimator.

Similar to Xie et al. (2019); Yin & Wang (2020), we introduce an unbiased version of bv⇡ to
fill in the gap at (st, at) where nst,at

is small. Concretely, every component in bv⇡ is sub-
stituted by the fictitious counterpart, i.e. ev⇡ :=

P
H

t=1hed⇡t , er⇡t i, with ed⇡
t

= eP⇡

t
ed⇡
t�1 and

eP⇡

t
(st|st�1) =

P
at�1

ePt(st|st�1, at�1)⇡(at�1|st�1). In particular, consider the high probabil-
ity event in Lemma C.1, i.e. let Et denotes the event {nst,at

� ndµ
t
(st, at)/2}7, then we define

ert(st, at) = brt(st, at)1(Et) + rt(st, at)1(E
c

t
)

ePt+1(·|st, at) = bPt+1(·|st, at)1(Et) + Pt+1(·|st, at)1(Ec

t
).

Similarly, for the OPEMA estimator uses data D0, the fictitious estimator is set to be
ert(st, at) = brt(st, at)1(E) + rt(st, at)1(E

c)

ePt+1(·|st, at) = bPt+1(·|st, at)1(E) + Pt+1(·|st, at)1(Ec)

where E denote the event {N � ndm/2}.

ev⇡ creates a bridge between bv⇡ and v⇡ because of its unbiasedness and it is also bounded by H
(see Lemma B.3 and Lemma B.5 in Yin & Wang (2020) for those preliminary results). Also, ev⇡ is
identical to bv⇡ with high probability, as stated by the following lemma.
Lemma C.3. For any 0 < � < 1, there exists an absolute constant c1 such that when total episode
n > c1dm · log(HSA/�), then with probability 1� �,

sup
⇡2⇧

|bv⇡ � ev⇡| = 0.

Proof. This Lemma is a direct corollary of Lemma C.1 by considering the event E1 :=
{9t, st, at s.t. nst,at

< ndµ
t
(st, at)/2} or {N < ndm/2} since bv⇡ and ev⇡ are identical on Ec

1.

Note bv⇡ and ev⇡ even equal to each other uniformly over all ⇡ in ⇧. This is not surprising since only
logging policy µ will decide if they are equal or not. This lemma shows how close bv⇡ and ev⇡ are.
Therefore in the following it suffices to consider the uniform convergence of sup

⇡2⇧ |ev⇡ � v⇡|.
Next by using a fictitious analogy of state-action expression as in equation (1), we have:

sup
⇡2⇧

|ev⇡ � v⇡| = sup
⇡2⇧

|
HX

t=1

hed⇡
t
, erti �

HX

t=1

hd⇡
t
, rti|

= sup
⇡2⇧

|
HX

t=1

hed⇡
t
, erti �

HX

t=1

hed⇡
t
, rti+

HX

t=1

hed⇡
t
, rti �

HX

t=1

hd⇡
t
, rti|

 sup
⇡2⇧

|
HX

t=1

hed⇡
t
� d⇡

t
, rti|

| {z }
(⇤)

+ sup
⇡2⇧

|
HX

t=1

hed⇡
t
, ert � rti|

| {z }
(⇤⇤)

(3)

7More rigorously, Et depends on the specific pair st, at and should be written as Et(st, at). However, for
brevity we just use Et and this notation should be clear in each context.
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We first deal with (⇤⇤) by the following lemma.
Lemma C.4. We have with probability 1� �:

sup
⇡2⇧

|
HX

t=1

hed⇡
t
, ert � rti|  O(

s
H2 log(HSA/�)

n · dm
)

Proof of Lemma C.4. Since |hed⇡
t
, ert � rti|  ||ed⇡

t
||1 · ||ert � rt||1, we obtain

|
HX

t=1

hed⇡
t
, ert � rti| 

HX

t=1

||ed⇡
t
||1 · ||ert � rt||1 =

HX

t=1

||ert � rt||1,

where we used ed⇡
t
(·) is a probability distribution. Therefore above expression further indicates

sup
⇡2⇧ |

P
H

t=1hed⇡t , ert � rti| 
P

H

t=1 ||ert � rt||1. Now by a union bound and Hoeffding inequality
(Lemma A.2),

P(sup
t

||ert � rt||1 > ✏) = P( sup
t,st,at

|ert(st, at)� rt(st, at)| > ✏)

 HSA · P(|ert(st, at)� rt(st, at)| > ✏)

= HSA · P(|brt(st, at)� rt(st, at)|1(Et) > ✏)

 2HSA · E[E[e�2nst,at
✏
2

|Et]]

 2HSA · E[E[e�ndm✏
2

|Et]] = 2HSA · e�ndm✏
2

:=
�

2
.

where we use P(A) = E[1A] = E[E[1A|X]]. Solving for ✏, then it follows:

sup
⇡2⇧

|
HX

t=1

hed⇡
t
, ert � rti| 

HX

t=1

||ert � rt||1  O(

s
H2 log(HSA/�)

n · dm
)

with probability 1� �. The case for E = {N � ndm/2} can be proved easily in a similar way.

Note that in order to measure the randomness in reward, sample complexity n only has dependence
of order H2, this result implies random reward will only cause error of lower order dependence in H .
Therefore, in many RL literature deterministic reward is directly assumed. Next we consider (⇤) in
(3) by decomposing

P
H

t=1hed⇡t � d⇡
t
, rti into a martingale type representation. This is the key for our

proof since with it we can use either uniform concentration inequalities or martingale concentration
inequalities to prove efficiency.

C.2 Decomposition of
P

H

t=1hed⇡t � d⇡
t
, rti

Let ed⇡
t
2 RS·A denote the marginal state-action probability vector, ⇡t 2 R(S·A)⇥S is the policy

matrix with (⇡t)(st,at),st = ⇡t(at|st) and (⇡t)(st,at),s = 0 for s 6= st. Moreover, let state-action
transition matrix Tt 2 RS⇥(S·A) to be (Tt)st,(st�1,at�1) = Pt(st|st�1, at�1), then we have

ed⇡
t
= ⇡t

eTt
ed⇡
t�1 (4)

d⇡
t
= ⇡tTtd

⇡

t�1. (5)
Therefore we have

ed⇡
t
� d⇡

t
= ⇡t( eTt � Tt)ed⇡t�1 + ⇡tTt(ed⇡t�1 � d⇡

t�1) (6)
recursively apply this formula, we have

ed⇡
t
� d⇡

t
=

tX

h=2

�h+1:t⇡h( eTh � Th)ed⇡h�1 + �1:t(ed⇡1 � d⇡1 ) (7)

where �h:t =
Q

t

v=h
⇡vTv and �t+1:t := 1. Now let X =

P
H

t=1hrt, ed⇡t � d⇡
t
i, then we have the

following:
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Theorem C.5 (martingale decomposition of X). We have:

X =
HX

h=2

hV ⇡

h
(s), (( eTh � Th)ed⇡h�1)(s)i+ hV ⇡

1 (s), (ed⇡1 � d⇡1 )(s)i,

where the inner product is taken w.r.t states.

Proof of Theorem C.5. By applying (7) and the change of summation, we have

X =
HX

t=1

 
tX

h=2

hrt,�h+1:t⇡h( eTh � Th)ed⇡h�1i+ hrt,�1:t(ed⇡1 � d⇡1 )i
!

=
HX

t=1

 
tX

h=2

hrt,�h+1:t⇡h( eTh � Th)ed⇡h�1i
!

+
HX

h=1

hrt,�1:t(ed⇡1 � d⇡1 )i

=
HX

t=2

 
tX

h=2

hrt,�h+1:t⇡h( eTh � Th)ed⇡h�1i
!

+
HX

h=1

hrt,�1:t(ed⇡1 � d⇡1 )i

=
HX

h=2

 
HX

t=h

hrt,�h+1:t⇡h( eTh � Th)ed⇡h�1i
!

+
HX

h=1

h(⇡T

1 �
T

1:trt)(s), (ed⇡1 � d⇡1 )(s)i

=
HX

h=2

0

BBBB@
h

HX

t=h

⇡T

h
�T

h+1:trt

| {z }
V

⇡

h
(s)

, ( eTh � Th)ed⇡h�1i

1

CCCCA
+ h(

HX

h=1

⇡T

1 �
T

1:trt)(s)

| {z }
V

⇡

1 (s)

, (ed⇡1 � d⇡1 )(s)i

D Proof of uniform convergence in OPE with full policies using standard
uniform concentration tools: Theorem 3.1

As a reminder for the reader, the OPEMA estimator used in this section is with data subset D0. Also,
by Lemma C.4 we only need to consider sup

⇡2⇧ |
P

H

t=1hed⇡t � d⇡
t
, rti|.

Theorem D.1. There exists an absolute constant c such that if n > c · 1
dm

· log(HSA/�), then with
probability 1� �, we have:

sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti

�����  O(

s
H4 log(HSA/�)

ndm
) + E

"
sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti

�����

#

Proof of Theorem D.1. Note in data D0 = {(st, at, s(i)t+1) : i = 1, ..., N ; t = 1, ..., H; st 2 S, at 2
A}8, not only s(i)

t+1 but also N are random variables.

We first conditional on N , then (st, at, s
(i)
t+1)’s are independent samples for all i, st, at since any

sample will not contain information about other samples. Therefore we can regroup D0 into N inde-
pendent samples with D0 = {X(i) : i = 1, ..., N} where X(i) = {(st, at, s(i)t+1), t = 1, ..., H; st 2
S, at 2 A}. Now for any i0, change X(i0) to X 0(i0) = {(st, at, s0(i0)t+1 ), t = 1, ..., H; st 2 S, at 2 A}
and keep the rest N�1 data the same, use this data to create new estimator with state-action transition

8Here we do not include r(i)
t

since the quantity sup
⇡2⇧

|
P

H

t=1
hed⇡t �d⇡t , rti| only contains the mean reward

function rt.
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ed0⇡ , then we have �����sup⇡2⇧
|

HX

t=1

hed⇡
t
� d⇡

t
, rti|� sup

⇡2⇧
|

HX

t=1

hed0⇡
t
� d⇡

t
, rti|

�����

 sup
⇡2⇧

�����|
HX

t=1

hed⇡
t
� d⇡

t
, rti|� |

HX

t=1

hed0⇡
t
� d⇡

t
, rti|

�����

 sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti �

HX

t=1

hed0⇡
t
� d⇡

t
, rti

�����

= sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� ed0⇡

t
, rti

�����

= sup
⇡2⇧

�����

HX

h=2

heV 0⇡
h
, ( eTh � eT 0

h
)ed⇡

h�1i+ heV 0⇡
1 , ed⇡1 � ed0⇡1 i

����� ,

where the last equation comes from the trick that substitutes d⇡
t

by ed0⇡
t

in Theorem C.5. By definition,
the above equals to

= sup
⇡2⇧

�����

HX

h=2

hbV 0⇡
h
, ( bTh � bT 0

h
)bd⇡

h�1i+ hbV 0⇡
1 , bd⇡1 � bd0⇡1 i

����� · 1(E)

 sup
⇡2⇧

 
HX

h=2

||( bTh � bT 0
h
)T bV 0⇡

h
||1||bd⇡

h�1||1 + |hbV 0⇡
1 , bd⇡1 � bd0⇡1 i|

!
· 1(E)

 sup
⇡2⇧

 
HX

h=2

||( bTh � bT 0
h
)T bV 0⇡

h
||1 + |hbV 0⇡

1 , bd⇡1 � bd0⇡1 i|
!

· 1(E)

Note the change of a single X(i0) will only change two entries of each row of ( bTh � bT 0
h
)T by 1/N

since with data D0, nst,at
= N for all st, at. Or in other words, given E,

bTT

h
� bT 0T

h
=

2

664

0 ... 0 1
N

0 ... � 1
N

... 0
0 1

N
0 ... � 1

N
... ... ... 0

........
� 1

N
0 ... 0 ... ... 0 ... 1

N

3

775 ,

where the locations of 1/N,�1/N in each row are random as it depends on how different is X 0(i0)

from X(i0). However, based on this fact, it is enough for us to guarantee

||( bTh � bT 0
h
)T bV 0⇡

h
||1  2

N
||bV 0⇡

h
||1  2

N
(H � h+ 1)  2

N
H

and same result holds for |hbV 0⇡
1 , bd⇡1 � bd0⇡1 i|  2H/N given N .

Combine all the results above, for a single change of X(i0) we have
�����sup⇡2⇧

|
HX

t=1

hed⇡
t
� d⇡

t
, rti|� sup

⇡2⇧
|

HX

t=1

hed0⇡
t
� d⇡

t
, rti|

�����  2
H2

N
1(E)  2

H2

N

for any fixed N . If we let Z = S(X(1), ..., X(N)) = sup
⇡2⇧ |

P
H

t=1hed⇡t � d⇡
t
, rti|, then for a given

N by independence and above bounded difference condition we can apply Mcdiarmid inequality
Lemma A.4 (where ⇠i = 2H2/N ) to obtain

P(|Z � E[Z]| � ✏|N)  2e�
N✏

2

2H4 :=
�

2
(8)

Now note when n > O( 1
dm

· log(HSA/�)), by Lemma C.1 we can obtain N > ndm/2 with
probability 1� �/2, combining this result and solving ✏ in (8), we have

sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti

�����  O(

s
H4 log(HSA/�)

n · dm
) + E

"
sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti

�����

#
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with probability 1� �.

Next before bounding E
h
sup

⇡2⇧

���
P

H

t=1hed⇡t � d⇡
t
, rti

���
i
, we first give a useful lemma.

Let � 2 (0, 1) to be any threshold parameter. Then we first have the following lemma:

Lemma D.2. Recall by definition Ph(sh, |sh�1, ah�1) = Th(sh, |sh�1, ah�1). It holds that with
probability 1� �, for all t, st, at 2 [H],S,A: if Ph(sh|sh�1, ah�1)  �, then

��� eTh(sh|sh�1, ah�1)� Th(sh|sh�1, ah�1)
��� 

s
� log(HSA/�)

2ndm
+

2 log(HSA/�)

3ndm
;

if Ph(sh, |sh�1, ah�1) > �, then
�����
eTh(sh|sh�1, ah�1)� Th(sh|sh�1, ah�1)

Th(sh|sh�1, ah�1)

����� 

s
log(HSA/�)

2ndm�
+

2 log(HSA/�)

3ndm�
;

Proof. First consider the case where Ph(sh|sh�1, ah�1)  �.

eTh(sh|sh�1, ah�1)�Th(sh|sh�1, ah�1) =
1

nsh�1,ah�1

ns
h�1,a

h�1X

i=1

⇣
1[s(i)

h
]� Th(sh|sh�1, ah�1)

⌘
1(Eh),

since Var[1[s(i)
h
]|sh�1, ah�1] = Ph(sh|sh�1, ah�1)(1 � Ph(sh|sh�1, ah�1)) 

Ph(sh|sh�1, ah�1)  �, therefore by Lemma A.3,

��� eTh(sh|sh�1, ah�1)� Th(sh|sh�1, ah�1)
���  1(Eh)

 s
� log(1/�)

nsh�1,ah�1

+
2 log(1/�)

nsh�1,ah�1

!


s
� log(1/�)

2ndm
+
2 log(1/�)

3ndm
;

Second, when Ph(sh|sh�1, ah�1) > �.

eTh(sh|sh�1, ah�1)� Th(sh|sh�1, ah�1)

Th(sh|sh�1, ah�1)
=

1

nsh�1,ah�1

ns
h�1,a

h�1X

i=1

 
1[s(i)

h
]

Th(sh|sh�1, ah�1)
� 1

!
1(Eh),

since

Var

"
1[s(i)

h
]

Th(sh|sh�1, ah�1)

�����sh�1, ah�1

#
 1

Th(sh|sh�1, ah�1)2
Var

h
1[s(i)

h
]
���sh�1, ah�1

i
 1

Th(sh|sh�1, ah�1)
 1

�
,

and since 1[s(i)
h

]
Th(sh|sh�1,ah�1)

 1/�, again be Bernstein inequality we have

�����
eTh(sh|sh�1, ah�1)� Th(sh|sh�1, ah�1)

Th(sh|sh�1, ah�1)

����� 

s
log(1/�)

2ndm�
+

2 log(1/�)

3ndm�
;

apply the union bound over t, st, at we obtain the stated result.

Bounding E
h
sup

⇡2⇧

���
P

H

t=1hed⇡t � d⇡
t
, rti

���
i
. First note by Theorem C.5:

E
"
sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti

�����

#


HX

h=2

E

sup
⇡2⇧

���hv⇡h(s), (( eTh � Th)ed⇡h�1)(s)i
���
�
+E


sup
⇡2⇧

���hV ⇡

1 (s), (ed⇡1 � d⇡1 )(s)i
���
�
,
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so it suffices to bound each E
h
sup

⇡2⇧

���hV ⇡

h
(s), (( eTh � Th)ed⇡h�1)(s)i

���
i
. First of all,

E

sup
⇡2⇧

���hV ⇡

h (s), (( eTh � Th)ed⇡h�1)(s)i
���
�

=E

2

4sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)( eTh � Th)(sh|sh�1, ah�1)ed⇡h�1(sh�1, ah�1)

������

3

5

E

2

4sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)( eTh � Th)(sh|sh�1, ah�1)ed⇡h�1(sh�1, ah�1)

������
· 1[Th(sh|sh�1, ah�1) > �]

3

5

+E

2

4sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)( eTh � Th)(sh|sh�1, ah�1)ed⇡h�1(sh�1, ah�1)

������
· 1[Th(sh|sh�1, ah�1)  �]

3

5

=E

2

4sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)Th(sh|sh�1, ah�1)ed⇡h�1(sh�1, ah�1)
eTh � Th

Th

(sh|sh�1, ah�1)

������
· 1[Th > �]

3

5

| {z }
(a)

+E

2

4sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)ed⇡h�1(sh�1, ah�1)( eTh � Th)(sh|sh�1, ah�1)

������
· 1[Th(sh|sh�1, ah�1)  �]

3

5

| {z }
(b)

,

Apply Lemma D.2 with �0/2 where �0 = �/H , then

(a)  sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)Th(sh|sh�1, ah�1)ed⇡h�1(sh�1, ah�1)

 s
log(2HSA/�0)

2ndm�
+

2 log(2HSA/�0)
3ndm�

!������
(1� �0

2
)

+H�0/2

 sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)Th(sh|sh�1, ah�1)ed⇡h�1(sh�1, ah�1)

 s
log(2H2SA/�)

2ndm�
+

2 log(2H2SA/�)
3ndm�

!������

+�/2

 sup
⇡2⇧

�����H
 s

2 log(H2SA/�)
2ndm�

+
2 log(2H2SA/�)

3ndm�

!�����+ �/2 = H

 s
log(2H2SA/�)

2ndm�
+

2 log(2H2SA/�)
3ndm�

!
+ �/2,

(b)  sup
⇡2⇧

������

X

sh,sh�1,ah�1

V ⇡

h (sh)ed⇡h�1(sh�1, ah�1)

 r
� log(2HSA/�)

2ndm
+

2 log(2HSA/�)
3ndm

!������
(1� �0

2
) +H

�0

2

 sup
⇡2⇧

�����HS

 r
� log(2H2SA/�)

2ndm
+

2 log(2H2SA/�)
3ndm

!�����+
�
2
= HS

 r
� log(2H2SA/�)

2ndm
+

2 log(2H2SA/�)
3ndm

!
+

�
2
,

Hence we have for any �,

E

sup
⇡2⇧

���hV ⇡

h
(s), (( eTh � Th)ed⇡h�1)(s)i

���
�

H

 s
log(2H2SA/�)

2ndm�
+

2 log(2H2SA/�)

3ndm�

!
+HS

0

@
s

� log(2H2SA/�)

2ndm
+

2 log(2H2SA/�)

3ndm

1

A+ �
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In particular, choose � = 1/S < 1, then above becomes

E

sup
⇡2⇧

���hV ⇡

h
(s), (( eTh � Th)ed⇡h�1)(s)i

���
�


s
2H2S log(2H2SA/�)

ndm
+

4HS log(2H2SA/�)

3ndm
+ �

Critically, above holds for any 81 > � > 0. Based on theorem condition n > c·1/dm log(HSA/✓) >
c · 1/dm9, choose � = c

ndm

, then above is further less equal to
s

2H2S log(2nH2SA)

ndm
+
4HS log(2nH2SA)

3ndm
+

c

ndm


s
2H2S log(2nH2SA)

ndm
+C·HS log(2nH2SA)

3ndm

where C is a new constant absorbs 1/ndm. If we further reducing it to

Finally, summing over all H , and again using new constant C 0 to absorb higher order term, we obtain

E
"
sup
⇡2⇧

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti

�����

#
 C 0

s
H4S log(nHSA)

ndm

Combing this with Theorem D.1 and Lemma C.4, we have proved Theorem 3.1.
Remark D.3. The key for proving this uniform convergence bound is that applying concentra-
tion inequality only to terms that are independent of the policies, i.e. eTh(sh|sh�1, ah�1) �
Th(sh|sh�1, ah�1). Therefore when taking supremum over policies, high probability event holds
with same probability without decay.

E Proof of uniform convergence in OPE with deterministic policies using
martingale concentration inequalities: Theorem 3.3

A reminder that all results in this section use data D for OPEMA estimator bv⇡ .

E.1 Martingale concentration result on
P

H

t=1hed⇡t � d⇡
t
, rti.

Let X =
P

H

t=1hed⇡t � d⇡
t
, rti and Dh := {s(i)

t
, a(i)

t
: t = 1, ..., h}n

i=1. Since Dh forms a filtration,
then by law of total expectation we have Xt = E[X|Dt] is martingale. Moreover, we have
Lemma E.1.

Xt := E[X|Dt] =
tX

h=2

hV ⇡

h
, ( eTh � Th)ed⇡h�1i+ hV ⇡

1 , ed⇡1 � d⇡1 i.

Proof of Lemma E.1. By martingale decomposition Theorem C.5 and note eTi, ed⇡i are measurable
w.r.t. Dt for i = 1, ..., t, so we have

E[X|Dt] =
HX

h=t+1

E
h
hV ⇡

h
, ( eTh � Th)ed⇡h�1i

���Dt

i
+

tX

h=2

hV ⇡

h
, ( eTh � Th)ed⇡h�1i+ hV ⇡

1 , (ed⇡1 � d⇡1 )i.

Note for h � t+ 1, Dt ⇢ Dh�1, so by total law of expectation (tower property) we have

E
h
hV ⇡

h
, ( eTh � Th)ed⇡h�1i

���Dt

i

=E
h
E
h
hV ⇡

h
, ( eTh � Th)ed⇡h�1i

���Dh�1

i���Dt

i

=E
h
hV ⇡

h
,E

h
( eTh � Th)

���Dh�1

i
ed⇡
h�1i

���Dt

i
= 0

where the last equality uses eTh is unbiased of Th given Dh�1. This gives the desired result.

Next we show martingale difference |Xt �Xt�1| is bounded with high probability.
9Note the ✓ in log(HSA/✓) is identical to the failure probability in Theorem D.1
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Lemma E.2. With probability 1� �,

sup
t

|Xt �Xt�1|  O(

s
H2 log(HSA/�)

n · dm
).

Proof.

|Xt �Xt�1| = hV ⇡

t
, ( eTt � Tt)ed⇡t�1i  ||( eTt � Tt)

TV ⇡

t
||1||ed⇡

t�1||1 = ||( eTt � Tt)
TV ⇡

t
||1.

For any fixed pair (st, at), we have

(( eTt � Tt)
TV ⇡

t
)(st�1, at�1)

=1(Et�1) · (( bTt � Tt)
TV ⇡

t
)(st�1, at�1)

=1(Et�1) ·
X

st

V ⇡

t
(st)( bTt � Tt)(st|st�1, at�1)

=1(Et�1) ·
 
X

st

V ⇡

t
(st) bTt(st|st�1, at�1)� E[V ⇡

t
|st�1, at�1]

!

=1(Et�1) ·
 
X

st

V ⇡

t
(st)

1

nst�1,at�1

nX

i=1

1(s(i)
t

= st, s
(i)
t�1 = st�1, a

(i)
t�1 = at�1)� E[V ⇡

t
|st�1, at�1]

!

=1(Et�1)

 
1

nst�1,at�1

nX

i=1

V ⇡

t
(s(i)

t
)1(s(i)

t
= st, s

(i)
t�1 = st�1, a

(i)
t�1 = at�1)� E[V ⇡

t
|st�1, at�1]

!

=1(Et�1)

0

B@
1

nst�1,at�1

X

i:s(i)
t�1=st�1,a

(i)
t�1=at�1

V ⇡

t
(s(i)

t
)� E[V ⇡

t
|st�1, at�1]

1

CA ,

where the fourth line uses the definition of bTt and the fifth line uses the fact
P

st
V ⇡

t
(st)1(s

(i)
t

=

st, s
(i)
t�1 = st�1, a

(i)
t�1 = at�1) = V ⇡

t
(s(i)

t
)1(s(i)

t
= st, s

(i)
t�1 = st�1, a

(i)
t�1 = at�1).

Note ||V ⇡

t
(·)||1  H and also conditional on Et, nst,at

� ndµ
t
(st, at)/2, therefore by Hoeffding’s

inequality and a Union bound we obtain with probability 1� �

sup
t

|Xt �Xt�1|  O(

s
H2 log(HSA/�)

n ·mint,st,at
dµ
t
(st, at)

) = O(

s
H2 log(HSA/�)

n · dm
).

Next we calculate the conditional variance of Var[Xt+1|Dt].

Lemma E.3. We have the following decomposition of conditional variance:

Var[Xt+1|Dt] =
X

st,at

ed⇡
t
(st, at)2 · 1(Et)

nst,at

·Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

= st, a
(1)
t

= at]
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Proof. Indeed,

Var[Xt+1|Dt] = Var

2

4
X

st,at

X

st+1

V ⇡

t+1(st+1)( eT � T )(st+1|st, at)ed⇡t (st, at)

������
Dt

3

5

=
X

st,at

Var

2

4
X

st+1

V ⇡

t+1(st+1)( eT � T )(st+1|st, at)

������
Dt

3

5 ed⇡
t
(st, at)

2

=
X

st,at

1(Et) ·Var

2

4
X

st+1

V ⇡

t+1(st+1) bT (st+1|st, at)

������
Dt

3

5 ed⇡
t
(st, at)

2

=
X

st,at

1(Et) ·Var

2

4
X

st+1

V ⇡

t+1(st+1)
1

nst,at

nX

i=1

1(s(i)
t+1 = st+1, s

(i)
t

= st, a
(i)
t

= at)

������
Dt

3

5 ed⇡
t
(st, at)

2

=
X

st,at

1(Et)

n2
st,at

·Var

2

64
X

i:s(i)
t

=st,a
(i)
t

=at

V ⇡

t+1(s
(i)
t+1)

�������
Dt

3

75 ed⇡
t
(st, at)

2

=
X

st,at

ed⇡
t
(st, at)2 · 1(Et)

nst,at

·Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

= st, a
(1)
t

= at]

(9)
where the second equal sign comes from the fact that when conditional on Dt, we can separate n
episodes into SA groups and episodes from different groups are independent of each other. The
third uses 1(Et) is measurable w.r.t Dt. Similarly, the last equal sign again uses nst,at

episodes are
independent given Dt.

Lemma E.4 (Yin & Wang (2020) Lemma 3.4). For any policy ⇡ and any MDP.

Var⇡

"
HX

t=1

r(1)
t

#
=

HX

t=1

⇣
E⇡

h
Var

h
r(1)
t

+ V ⇡

t+1(s
(1)

t+1
)
���s(1)t

, a(1)

t

ii

+ E⇡

h
Var

h
E[r(1)

t
+ V ⇡

t+1(s
(1)

t+1
)|s(1)

t
, a(1)

t
]
���s(1)t

ii ⌘
.

This Lemma suggests if we can bound ed⇡
t

by O(d⇡
t
) with high probability, then by Lemma E.3 we

have w.h.p
HX

t=1

Var[Xt+1|Dt]  O(
1

ndm
·

HX

t=1

E[Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

, a(1)
t

]])  O(
H2

ndm
)

Note this gives only H2 dependence for
P

H

t=1 Var[Xt+1|Dt] instead of a naive bound with H3 and
helps us to save a H factor.

Next we show how to bound ed⇡
t

.

E.2 Bounding ed⇡
t
(st, at)� d⇡

t
(st, at)

Our analysis is based on using martingale structure to derive bound on ed⇡
t
(st, at) � d⇡

t
(st, at)

for fixed t, st, at with probability 1 � �/HSA, then use a union bound to get a bound for all
ed⇡
t
(st, at)� d⇡

t
(st, at) with probability 1� �.

Concretely, in (7) if we only extract the specific (st, at), then we have

ed⇡
t
(st, at)� d⇡

t
(st, at) =

tX

h=2

(�h+1:t⇡h( eTh � Th)ed⇡h�1)(st, at) + (�1:t(ed⇡1 � d⇡1 ))(st, at),

here ed⇡
t
(st, at) � d⇡

t
(st, at) already forms a martingale with filtration Ft = �(Dt) and

(�h+1:t⇡h( eTh � Th)ed⇡h�1)(st, at) is the corresponding martingale difference since

E[(�h+1:t⇡h( eTh � Th)ed⇡h�1)(st, at)|Fh�1] = (�h+1:t⇡hE[( eTh � Th)|Fh�1]ed⇡h�1)(st, at) = 0.
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Now we fix specific (st, at). Then denote (�h+1:t⇡h)(st, at) := �0
h:t 2 R1⇥S , then we have

|(�h+1:t⇡h( eTh�Th)ed⇡h�1)(st, at)| = |�0
h:t( eTh�Th)ed⇡h�1| = |h( eTh�Th)

T�0T
h:t, ed⇡h�1i|  ||�0

h:t( eTh�Th)||1·1.

Note here �0
h:t(

eTh � Th) is a row vector with dimension SA.

Bounding ||�0
h:t(

eTh � Th)||1 .

In fact, for any given (sh�1, ah�1), we have

�0
h:t( eTh � Th)(sh�1, sh�1) = 1(Et) · �0

h:t( bTh � Th)(sh�1, ah�1)

=1(Et) · �0
h:t

0

B@
1

nst�1,at�1

X

i:s(i)
h�1=sh�1,a

(i)
h�1=ah�1

e
s
(i)
h

� E[e
s
(1)
h

|s(1)
h�1 = sh�1, a

(1)
h�1 = ah�1]

1

CA

=1(Et)

0

B@
1

nst�1,at�1

X

i:s(i)
h�1=sh�1,a

(i)
h�1=ah�1

�0
h:t(s

(i)
h
)� E[�0

h:t(s
(1)
h

)|s(1)
h�1 = sh�1, a

(1)
h�1 = ah�1]

1

CA

Note by definition �0
h:t(s

(i)
h
)  1, since (�h+1:t⇡h)(st, at) := �0

h:t 2 R1⇥S and �h+1:t,⇡h are just
probability transitions. Therefore by Hoeffding’s inequality and law of total expectation, we have

P
⇣
|�0

h:t( eTh � Th)(sh�1, ah�1)| > ✏
⌘
= P

⇣
|�0

h:t( bTh � Th)(sh�1, ah�1)| > ✏
���Et

⌘

 E

exp(�

2nsh�1,ah�1 · ✏2

1
)

����Et

�
 exp(�

ndµ
h�1(sh�1, ah�1) · ✏2

1
)

and apply a union bound to get

P (sup
h

||�0
h:t( eTh � Th)||1 > ✏)  H · sup

h

P (||�0
h:t( eTh � Th)||1 > ✏)

HSA · sup
h,sh�1,ah�1

P
⇣
|�0

h:t( eTh � Th)(sh�1, ah�1)| > ✏
⌘

HSA · exp(�
nmin dµ

h�1(sh�1, ah�1) · ✏2

1
) :=

�

HSA

(10)

Let the right hand side of (10) to be �/HSA, then we have w.p. 1� �/HSA,

sup
h

||�0
h:t( eTh � Th)||1  O(

s
1

n · dm
log

H2S2A2

�
). (11)

Go back to bounding ed⇡
t
(st, at) � d⇡

t
(st, at). By Azuma-Hoeffding’s inequality (Lemma A.5),

we have10

P(|ed⇡
t
(st, at)� d⇡

t
(st, at)| > ✏)  exp(� ✏2

P
t

i=1(suph ||�0
h:t(

eTh � Th)||1)2
) := �/HSA,

where
P

t

i=1(suph ||�0
h:t(

eTh � Th)||1)2 is the sum of bounded square differences in Azuma-
Hoeffding’s inequality. Therefore we have w.p. 1� �/HSA,

|ed⇡
t
(st, at)� d⇡

t
(st, at)|  O(

s

t · (sup
h

||�0
h:t(

eTh � Th)||1)2 log
HSA

�
), (12)

10To be more precise here we actually use a weaker version of Azuma-Hoeffding’s inequality, see Remark E.7.

23



combining (11) with above we further have that w.p. 1� 2�/HSA,

|ed⇡
t
(st, at)� d⇡

t
(st, at)|  O(

s
t

ndm
log

H2S2A2

�
log

HSA

�
)

Lastly, by a union bound and simple scaling (from 2� to �) we have w.p. 1� �

sup
t

||ed⇡
t
� d⇡

t
||1  O(

s
H

ndm
log

H2S2A2

�
log

HSA

�
).

This implies that w.p. 1� �, 8t, st, at,

ed⇡
t
(st, at)

2  2d⇡
t
(st, at)

2 +O(
H

ndm
log

H2S2A2

�
log

HSA

�
). (13)

Combining (13) with Lemma E.4 and Lemma E.3, we obtain:
Lemma E.5. With probability 1� �,

HX

t=1

Var[Xt+1|Dt]  O(
H2

ndm
) +O(

H4SA

n2d2
m

· log H2S2A2

�
log

HSA

�
) (14)

Proof of Lemma E.5. By (13) and Lemma E.3, we have 8t, with probability ay least 1� �,

Var[Xt+1|Dt] 
X

st,at

O(
ed⇡
t
(st, at)2·
ndm

) ·Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

= st, a
(1)
t

= at]


X

st,at

O(
1

ndm
)

✓
2d⇡

t
(st, at)

2 +O(
H

ndm
log

H2S2A2

�
log

HSA

�
)

◆
·Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

= st, a
(1)
t

= at]


X

st,at

O(
1

ndm
)

✓
2d⇡

t
(st, at) +O(

H

ndm
log

H2S2A2

�
log

HSA

�
)

◆
·Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

= st, a
(1)
t

= at]

 O(
1

ndm
)E

h
Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

, a(1)
t

]
i
+O(

1

ndm
· H

ndm
log

H2S2A2

�
log

HSA

�
·H2SA)

= O(
1

ndm
)E

h
Var[V ⇡

t+1(s
(1)
t+1)|s

(1)
t

, a(1)
t

]
i
+O(

H3SA

n2d2
m

· log H2S2A2

�
log

HSA

�
)

then sum over t and apply Lemma E.4 gives the stated result.

Combining all the results, we are able to prove:
Theorem E.6. With probability 1� �, we have

�����

HX

t=1

hed⇡
t
� d⇡

t
, rti

�����  O(

s
H2 log(HSA/�)

ndm
+

s
H4SA · log(H2S2A2/�) log(HSA/�)

n2d2
m

)

where O(·) absorbs only the absolute constants.

Proof of Theorem E.6. Recall X =
P

H

t=1hed⇡t � d⇡
t
, rti and by law of total expectation it is easy to

show E[X] = 0. Next denote �2 = O( H
2

ndm

) + O(H
4
SA

n2d2
m

· log H
2
S

2
A

2

�
log HSA

�
) as in Lemma E.5

and also let M = sup
t
|Xt � Xt�1|. Then by Freedman inequality (Lemma A.6), we have with

probability 1� �/3,

|X � E[X]| 
p
8�2 · log(3/�) + 2M

3
· log(3/�), Or W � �2.

where W =
P

H

t=1 Var[Xt+1|Dt]. Next by Lemma E.5, we have P(W � �2)  1/3�, this implies
with probability 1� 2�/3,

|X � E[X]| 
p
8�2 · log(3/�) + 2M

3
· log(3/�).
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Finally, by Lemma E.2, we have P(M � O(
q

H2 log(HSA/�)
ndm

))  �/3. Also use E[X] = 0, we have
with probability 1� �,

|X| 
p

8�2 · log(3/�) +O(

s
H2 · log(HSA/�)

ndm
log(3/�)).

Plugging back the expression of �2 = O( H
2

ndm

) +O(H
4
SA

n2d2
m

· log H
2
S

2
A

2

�
log HSA

�
) and assimilating

the same order terms give the desired result.

Remark E.7. Rigorously, standard Azuma-Hoeffding’s inequality Lemma A.5 does not apply to (12)
since sup

h
||�0

h:t(
eTh � Th)||1 is not a deterministic upper bound, we only have the difference bound

with high probability sense, see (11). Therefore, strictly speaking, we need to apply Theorem 32 in
Chung & Lu (2006) which is a weaker Azuma-Hoeffding’s inequality allowing bounded difference with
high probability. The same logic applies for a weaker freedman’s inequality consisting of Theorem 34
and Theorem 37 in Chung & Lu (2006) since our martingale difference M = sup

t
|Xt �Xt�1| in

the proof of Theorem E.6 is bounded with high probability. We avoid explicitly using them in order to
make our proofs more readable for our readers.

We end this section by giving the proofs of Theorem 3.2 and Theorem 3.3.

Proof of Lemma 3.2 and Theorem 3.3. The proof of Lemma 3.2 comes from Lemma C.3, Lemma C.4
and Theorem E.6. The proof of Theorem 3.3 relies on applying a union bound over ⇧ in Theo-
rem 3.2 (recall all non-stationary deterministic policies have |⇧| = AHS), then extra dependence ofp
log(|⇧|) =

p
HS log(A) pops out. Note that the higher order term has two trailing log terms (see

the right hand side of (14)), so when replacing � by �/|⇧| with a union bound, both terms will give
extra

p
HS dependence so in higher order term we have extra HS dependence but not just

p
HS.

F Proof of uniform convergence problem with local policy class.

In this section, we consider using OPEMA estimator with data D0. Also, WLOG we only consider
deterministic reward (as implied by Lemma C.4 random reward only causes lower order dependence).
Also, we fix N > 0 for the moment. First recall for all t = 1, ..., H

V ⇡

t
(st) = E⇡

"
HX

t0=t

rt0(s
(1)
t0 , a(1)

t
)

�����s
(1)
t

= st

#

Q⇡

t
(st, at) = E⇡

"
HX

t0=t

rt0(s
(1)
t0 , a(1)

t
)

�����s
(1)
t

= st, a
(1)
t

= at

#

where rt(s, a) are deterministic rewards and s(1)
t

, a(1)
t

are random variables. Consider V ⇡

t
, Q⇡

t
as

vectors, then by standard Bellman equations we have for all t = 1, ..., H (define VH+1 = QH+1 = 0)

Q⇡

t
= rt + P⇡

t+1Q
⇡

t+1 = rt + Pt+1V
⇡

t+1, (15)

where P⇡

t
2 R(SA)⇥(SA) is the state-action transition and Pt(·|·, ·) 2 R(SA)⇥S is the transition

probabilities defined in Section 2. Also, we have bellman optimality equations:

Q?

t
= rt + Pt+1V

?

t+1, V ?

t
(st) := max

at

Q?

t
(st, at), ⇡?

t
(st) := argmax

at

Q?

t
(st, at) 8st (16)

where ⇡? is one optimal deterministic policy. The corresponding Bellman equations and Bellman
optimality equations for empirical MDP cM are defined similarly. Since we consider deterministic
rewards, by Bellman equations we have

bQ⇡

t
�Q⇡

t
= bP⇡

t+1
bQ⇡

t+1 � P⇡

t+1Q
⇡

t+1 = ( bP⇡

t+1 � P⇡

t+1) bQ⇡

t+1 + P⇡

t+1( bQ⇡

t+1 �Q⇡

t+1)
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for t = 1, ..., H . By writing it recursively, we have 8t = 1, ..., H � 1

bQ⇡

t
�Q⇡

t
=

HX

h=t+1

�⇡

t+1:h�1( bP⇡

h
� P⇡

h
) bQ⇡

h

=
HX

h=t+1

�⇡

t+1:h�1( bPh � Ph)bV ⇡

h

where �⇡

t:h =
Q

h

i=t
P⇡

i
is the multi-step state-action transition and �⇡

t+1:t := I .

Note b⇡⇤ to be the empirical optimal policy over cM , we are interested in how to obtain uniform
convergence for any policy ⇡ that is close to b⇡⇤. More precisely, in this section we consider the policy
class ⇧1 to be:

⇧1 := {⇡ : s.t. ||bV ⇡

t
� bV b⇡?

t
||1  ✏opt, 8t = 1, ..., H}

where ✏opt � 0 is a parameter decides how large the policy class is. We now assume b⇡ to be
any policy within ⇧1 throughout this section. Also, b⇡ may be a policy learned from a learning
algorithm using the data D. In this case, b⇡ may not be independent of bP .
We start with the following simple calculation:11

��� bQb⇡
t
�Qb⇡

t

��� 
HX

h=t+1

�⇡

t+1:h�1

���( bPh � Ph)bV b⇡
h

���


HX

h=t+1

�⇡

t+1:h�1

���( bPh � Ph)bV b⇡?

h

���

| {z }
(⇤⇤⇤)

+
HX

h=t+1

�⇡

t+1:h�1

���( bPh � Ph)(bV b⇡?

h
� bV b⇡

h
)
���

| {z }
(⇤⇤⇤⇤)

(17)

We now analyze (⇤ ⇤ ⇤) and (⇤ ⇤ ⇤⇤).

F.1 Analyzing
P

H

h=t+1 �
⇡

t+1:h�1

���( bPh � Ph)(bV b⇡?

h
� bV b⇡

h
)
���

First, by vector induced matrix norm12 we have�����

HX

h=t+1

�b⇡
t+1:h�1 ·

���( bPh � Ph)(bV b⇡?

h
� bV b⇡

h
)
���

�����
1

 H · sup
h

����b⇡
t+1:h�1

���
1

���|( bPh � Ph)(bV b⇡?

h
� bV b⇡

h
)|
���
1

 H · sup
h

���|( bPh � Ph)(bV b⇡?

h
� bV b⇡

h
)|
���
1

where the last equal sign uses multi-step transition �⇡

t+1:h�1 is row-stochastic. Note given N , bPt(·|·, ·)
all have N in the denominator. Therefore, by Hoeffding inequality and a union bound we have with
probability 1� �,

sup
t,st,st�1,at�1

| bPt(st|st�1, at�1)� Pt(st|st�1, at�1)|  O(

r
log(HSA/�)

N
),

this indicates

sup
h

���|( bPh � Ph)(bV b⇡?

h
� bV b⇡

h
)|
���
1

 ✏opt · sup
h

���| bPh � Ph| · 1
���
1

 ✏opt ·O(S

r
log(HSA/�)

N
),

where 1 2 RS is all-one vector. To sum up, we have
Lemma F.1. Fix N > 0, we have with probability 1� �, for all t = 1, ..., H � 1

HX

h=t+1

�b⇡
t+1:h�1

���( bPh � Ph)(bV b⇡?

h
� bV b⇡

h
)
���  ✏opt ·O

 r
H2S2 log(HSA/�)

N
· 1
!

Now we consider (⇤ ⇤ ⇤).
11Since all quantities in the calculation are vectors, so the absolute value | · | used is point-wise operator.
12For A a matrix and x a vector we have kAxk1  kAk1 kxk1.
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F.2 Analyzing
P

H

h=t+1 �
b⇡
t+1:h�1

���( bPh � Ph)bV b⇡?

h

���.

Lemma F.2. Given N , we have with probability 1� �, 8t = 1, ..., H � 1

HX

h=t+1

�b⇡
t+1:h�1

���( bPh � Ph)bV b⇡?

h

��� 
HX

h=t+1

�b⇡
t+1:h�1

 
4

r
log(HSA/�)

N

q
Var(bV b⇡?

h
) +

4(H � t)

3N
log(

HSA

�
) · 1

!

where Var(v⇡
t
) 2 RSA and Var(V ⇡

t
)(st�1, at�1) = Varst [V

⇡

t
(·)|st�1, at�1] and | · |,

p
· are point-

wise operator.

Proof of Lemma F.2. The key point is to guarantee bPh is independent of bV b⇡?

h
so that we can apply

Bernstein inequality w.r.t the randomness in bPh. In fact, note given N all data pairs in D0 are
independent of each other, and bPh only uses data from h � 1 to h. Moreover, bV b⇡?

h
only uses data

from time h to H since bV ⇡

h
uses data from h to H by bellman equation (15) for any ⇡ and optimal

policy b⇡?

h:H also only uses data from h to H by bellman optimality equation (16).

Then by Bernstein inequality (Lemma A.3), with probability 1� �

���( bPh � Ph)bV b⇡?

h

��� (st�1, at�1)  4

r
log(1/�)

N

q
Var(bV b⇡?

h
)(st�1, at�1) +

4(H � t)

3N
log(

1

�
)

apply a union bound and take the sum we get the stated result.

Now combine Lemma F.1 and Lemma F.2 we obtain with probability 1� �, for all t = 1, ..., H � 1

��� bQb⇡
t
�Qb⇡

t

��� 
HX

h=t+1

�b⇡
t+1:h�1
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r
log(HSA/�)

N

q
Var(bV b⇡?

h
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4(H � t)

3N
log(
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�
) · 1

!

+ c1✏opt ·
r

H2S2 log(HSA/�)

N
· 1

 4

r
log(HSA/�)

N

HX

h=t+1

�b⇡
t+1:h�1

q
Var(bV b⇡?

h
) +

4H2

3N
log(

HSA

�
) · 1

+ c1✏opt ·
r

H2S2 log(HSA/�)

N
· 1,

(18)

Next note
p
Var(·) is a norm, therefore by norm triangle inequality we have
q
Var(bV b⇡?

h
) 

q
Var(bV b⇡?

h
� bV b⇡

h
) +

q
Var(bV b⇡

h
� V b⇡

h
) +

q
Var(V b⇡

h
)


���bV b⇡?

h
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h

���
1

· 1+
���bV b⇡

h
� V b⇡

h

���
1

· 1+
q
Var(V b⇡

h
)

 ✏opt · 1+
��� bQb⇡

h
�Qb⇡

h

���
1

· 1+
q
Var(V b⇡

h
)

Plug this into (18) to obtain

��� bQb⇡
t
�Qb⇡

t

���  4

r
log(HSA/�)

N

HX

h=t+1

✓
�b⇡
t+1:h�1

q
Var(V b⇡

h
) +

��� bQb⇡
h
�Qb⇡
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���
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· 1
◆
+

4H2

3N
log(

HSA

�
) · 1

+ c2✏opt ·
r

H2S2 log(HSA/�)

N
· 1.

(19)

Next lemma helps us to bound
P

H

h=t+1 �
b⇡
t+1:h�1

q
Var(V b⇡

h
).
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Lemma F.3. A conditional version of Lemma E.4 holds:

Var⇡

"
HX

t=h

r(1)
t

�����s
(1)
h

= sh, a
(1)
h

= ah

#
=

HX

t=h

⇣
E⇡

h
Var

h
r(1)
t
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(1)
h

= ah
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(20)
and by using (20) we can show

HX

h=t+1

�b⇡
t+1:h�1

q
Var(V b⇡

h
) 

p
(H � t)3 · 1.

Proof. The proof of (20) uses the identical trick as Lemma E.4 except the total law of variance is
replaced by the total law of conditional variance.

Moreover, recall �b⇡
t+1:h�1 =

Q
h�1
i=t+1 P

b⇡
i

is the multi-step transition, so for any pair (st, at),

HX

h=t+1

✓
�b⇡
t+1:h�1

q
Var(V b⇡

h
)

◆
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
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where all the inequalities are Cauchy-Schwarz inequalities.

Apply Lemma F.3 to bound (19), and use 1 norm on both sides, we obtain
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Theorem F.4. Conditional on N > 0, then with probability 1� �, we have for all t = 1, ..., H � 1

��� bQb⇡
t
�Qb⇡

t

���
1

 4

r
H3 log(HSA/�)

N
+ 4

r
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4H2

3N
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+ c2✏opt ·
r

H2S2 log(HSA/�)

N
.

Then by using backward induction and Theorem F.4, we have the following:
Theorem F.5. Suppose N � 64H2 · log(HSA/�) and ✏opt 

p
H/S, then we have with probability

1� �,
��� bQb⇡

1 �Qb⇡
1

���
1

 2(9 + c2)

r
H3 log(HSA/�)

N
where c2 is the same constant in Theorem F.4.

Proof. Under the condition, by Theorem F.4 it is easy to check for all t = 1, ..., H�1 with probability
1� �,
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���
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N
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,

which we conditional on.

For t = H � 1, we have
��� bQb⇡

H�1 �Qb⇡
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H3 log(HSA/�)

N
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Suppose
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h
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h

���
1

 2(9 + c2)
q

H3 log(HSA/�)
N

holds for all h = t+ 1, ..., H , then for h = t,
we have
��� bQb⇡

t
�Qb⇡

t

���
1

 (5 + c2)
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H3 log(HSA/�)

N
+ 4

r
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��� bQb⇡
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���
1
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H3 log(HSA/�)

N
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where the last line uses the condition N � 64H2 · log(HSA/�). By induction, we have the result.

Proof of Theorem 3.4. By Theorem F.5 we have for N � c ·H2 · log(HSA/�),

P
 ��� bQb⇡

1 �Qb⇡
1

���
1

� 2(9 + c2)

r
H3 log(HSA/�)

N

�����N
!

 �

The only thing left is to use Lemma C.1 to bound the event that {N < ndm/2} has small probability.

Last but not least, the condition n > c1H2 log(HSA/�)/dm is sufficient for applying Lemma C.1
and it also implies N � c ·H2 · log(HSA/�) (the condition of Theorem F.5) when N � ndm/2
since:

n > c1H
2 log(HSA/�)/dm ) ndm/2 � c2H

2 log(HSA/�)

which implies N � c2 ·H2 · log(HSA/�) when N � ndm/2.
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G Proof of uniform convergence lower bound.

In this section we prove a uniform convergence OPE lower bound of ⌦(H3/dm✏2). Conceptually,
uniform convergence lower bound can be derived by a reduction to the lower bound of identifying the
✏-optimal policy. There are quite a few literature that provide information theoretical lower bounds in
different setting, e.g. Dann & Brunskill (2015); Jiang et al. (2017); Krishnamurthy et al. (2016); Jin
et al. (2018); Sidford et al. (2018). However, to the best of our knowledge, there is no result proven
for the non-stationary transition finite horizon episodic setting with bounded rewards. For example,
Sidford et al. (2018) prove the result sample complexity lower bound of ⌦(H3SA/✏2) with stationary
MDP and their proof cannot be directly applied to non-stationary setting as they reduce the problem
to infinite horizon discounted setting which always has stationary transitions. Dann & Brunskill
(2015) prove the episode complexity of e⌦(H2SA/✏2) for the stationary transition setting. Jin et al.
(2018) prove the ⌦(

p
H2SAT ) regret lower bound for non-stationary finite horizon online setting

but it is not clear how to translate the regret to PAC-learning setting by keeping the same sample
complexity optimality. Jiang et al. (2017) prove the ⌦(HSA/✏2) lower bound for the non-stationary
finite horizon offline episodic setting where they assume

P
H

i=1 ri  1 and this is also different from
our setting since we have 0  rt  1 for each time step.

Our proof consists of three steps. 1. We will first show a minimax lower bound (over all MDP
instances) for learning ✏-optimal policy is ⌦(H3SA/✏2); 2. Based on 1, we can further show a
minimax lower bound (over problem class Mdm

) for learning ✏-optimal policy is ⌦(H3/dm✏2); 3.
prove the uniform convergence OPE lower bound of the same rate.

G.1 Information theoretical lower sample complexity bound over all MDP instances for
identifying ✏-optimal policy.

In fact, a modified construction of Theorem 5 in Jiang et al. (2017) is our tool for obtaining
⌦(H3SA/✏2) lower bound. We can get the additional H2 factor by using

P
H

i=1 ri can be of
order O(H).

Theorem G.1. Given H � 2, A � 2, 0 < ✏ < 1
48

p
8

and S � c1 where c1 is a universal constant.
Then there exists another universal constant c such that for any algorithm and any n  cH3SA/✏2,
there exists a non-stationary H horizon MDP with probability at least 1/12, the algorithm outputs a
policy b⇡ with v? � vb⇡ � ✏.

Like in Jiang et al. (2017), the proof relies on embedding ⇥(HS) independent multi-arm bandit
problems into a hard-to-learn MDP so that any algorithm that wants to output a near-optimal policy
needs to identify the best action in ⌦(HS) problems. In our construction, the first half of the hard-
to-learn MDP instance is identical to the case in Jiang et al. (2017) and the latter half uses a “naive”
copy construction which is uninformative. The uninformative extension will help to produce the
additional H2 factor.

Proof of Theorem G.2. We construct a non-stationary MDP with S states per level, A actions per
state and has horizon 2H . At each time step, states are categorized into four types with three special
states wh, gh, bh and the remaining S � 3 “bandit” states denoted by sh,i, i 2 [S � 3]. Each bandit
state has an unknown best action a?

h,i
that provides the highest expected reward comparing to other

actions.
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Figure 2: An illustration of State-space transition diagram

The transition dynamics are defined as follows:

• for h = 1, ..., H � 1,

– For waiting states wh, all actions have equivalent state-action transitions, i.e. for all
a 2 A, we have

P(·|wh, a) =

(
1� 1

H
if · = wh+1

1
H(S�3) if · = sh+1,i, i = 1, ..., S � 3

– gh always transitions to gh+1 and bh always transitions to bh+1, i.e. for all a 2 A, we
have

P(gh+1|gh, a) = 1, P(bh+1|bh, a) = 1.

– For each bandit state sh,i, the corresponding optimal action a?
h,i

follows:

P(·|sh,i, a?h,i) =
⇢
1/2 + ⌧, if · = gh+1,
1/2� ⌧, if · = bh+1,

and all other actions a 2 A follow:

P(·|sh,i, a) =
⇢
1/2, if · = gh+1,
1/2, if · = bh+1.

We will determine parameter ⌧ at the end of the proof.

• for h = H, ..., 2H � 1, all states will always transition to the same type of states for the
next step, i.e. 8a 2 A,

P(gh+1|gh, a) = P(bh+1|bh, a) = P(wh+1|wh, a) = P(sh+1,i|sh,i, a) = 1, 8i 2 [S � 3].
(21)

• The initial distribution is decided by:

P(w1) = 1� 1/H, P(s1,i) =
1

H(S � 3)
, 8i 2 [S � 3]. (22)

• State s will receives reward 1 if and only if s = gh and h � H . The reward at all other
states is zero.
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By this construction the optimal policy must take a?
h,i

for each bandit state sh,i for at least the first
half of the MDP, i.e. need to take a?

h,i
for h  H . In other words, this construction embeds at least

H(S � 3) independent best arm identification problems that are identical to the stochastic multi-arm
bandit problem in Lemma A.7 into the MDP. The reason why these problems are independent is
because the samples collected from one provides no information about any others.

Notice in our construction, for any bandit state sh,i with h  H , the difference of the expected
reward between optimal action a?

h,i
and other action is:

(
1

2
+ ⌧) · E[r(h+1):2H |gh+1] + (

1

2
� ⌧) · E[r(h+1):2H |bh+1]�

1

2
· E[r(h+1):2H |gh+1] +

1

2
· E[r(h+1):2H |bh+1]

=(
1

2
+ ⌧) ·H + (

1

2
� ⌧) · 0� 1

2
·H +

1

2
· 0 = ⌧H

(23)
so it seems by Lemma A.7 one suffices to use the least possible A

72(⌧H)2 samples to identify the
best action a?

h,i
. However, note the construction of the latter half of the MDP (21) uses mindless

reproduction of previous steps and therefore provides no additional information about the best action
once the state at time H is known. In other words, observing

P2H
t=1 rt = H is equivalent as observingP

H

t=1 rt = 1. Therefore, for the bandit states in the first half the samples that provide information for
identifying the best arm is up to time H . As a result, the difference of the expected reward between
optimal action a?

h,i
and other action for identifying the best arm should be corrected as:

(
1

2
+ ⌧) · E[r(h+1):H |gh+1] + (

1

2
� ⌧) · E[r(h+1):H |bh+1]�

1

2
· E[r(h+1):H |gh+1] +

1

2
· E[r(h+1):H |bh+1]

=(
1

2
+ ⌧) · 1 + (

1

2
� ⌧) · 0� 1

2
· 1 + 1

2
· 0 = ⌧.

Now by Lemma A.7, for each bandit state sh,i satisfying h  H , unless A

72⌧2 samples are collected
from that state, the learning algorithm fails to identify the optimal action a?

h,i
with probability at least

1/3.

After running any algorithm, let C be the set of (h, s) pairs for which the algorithm identifies the
correct action. Let D be the set of (h, s) pairs for which the algorithm collects fewer than A

72⌧2

samples. Then by Lemma A.7 we have

E[|C|] = E

2

4
X

(h,s)

1[ah,s = a?
h,s

]

3

5  ((S � 3)H � |D|) + E

2

4
X

(h,s)2D

1[ah,s = a?
h,s

]

3

5

 ((S � 3)H � |D|) + 2

3
|D| = (S � 3)H � 1

3
|D|.

If we have n  H(S�3)
2 ⇥ A

72⌧2 , by pigeonhole principle the algorithm can collect A

72⌧2 samples for
at most half of the bandit problems, i.e. |D| � H(S � 3)/2. Therefore we have

E[|C|]  (S � 3)H � 1

3
|D|  5

6
(S � 3)H.

Then by Markov inequality

P

|C| � 11

12
H(S � 3)

�
 5/6

11/12
=

10

11

so the algorithm failed to identify the optimal action on 1/12 fraction of the bandit problems with
probability at least 1/11. Note for each failure in identification, the reward is differ by ⌧H (see (23)),
therefore under the event {|C 0| � 1

12H(S � 3)}, following the similar calculation of Jiang et al.
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(2017) the suboptimality of the policy produced by the algorithm is

✏ := v? � vb⇡ = P[visit C 0]⇥ ⌧H + P[visit C]⇥ 0 = P[
[

(h,i)2C0

visit(h, i)]⇥ ⌧H

=
X

(h,i)2C0

P[visit(h, i)]⇥ ⌧H =
X

(h,i)2C0

1

H(S � 3)
(1� 1/H)h�1⌧H

�
X

(h,i)2C0

1

H(S � 3)
(1� 1/H)H⌧H �

X

(h,i)2C0

1

H(S � 3)

1

4
⌧H

� H(S � 3)

12

1

H(S � 3)

1

4
⌧H =

⌧H

48
.

where the third equal sign uses all best arm identification problems are independent. Now we set
⌧ = min(

p
1/8, 48✏/H) and under condition n  cH3SA/✏2, we have

n  cH3SA/✏2  cHSA/(✏/H)2  c482HSA/⌧2 = c482 · 72HS· A

72⌧2
:= c0HS· A

72⌧2
 H(S � 3)

2
· A

72⌧2
,

the last inequality holds as long as S � 3/(1� 2c0). Therefore in this situation, with probability at
least 1/11, v? � vb⇡ � ✏. Finally, we can use scaling to reduce the horizon from 2H to H .

G.2 Information theoretical lower sample complexity bound over problems in Mdm
for

identifying ✏-optimal policy.

For all 0 < dm  1
SA

, define CM := {(t, st, at) : s.t. rM
t
(st, at) > 0}. Let the class of problems

be

Mdm
:=

�
(µ,M)

�� min
(t,st,at)2CM

dµ
t
(st, at) � dm

 
,

now we consider deriving minimax lower bound over this class.
Theorem G.2. Under the same condition of Theorem G.1. In addition assume 0 < dm  1

SA
. There

exists another universal constant c such that when n  cH3/dm✏2, we always have

inf
v
⇡
alg

sup
(µ,M)2Mdm

Pµ,M (v⇤ � v⇡alg � ✏) � p.

Proof. The hard instance (µ,M) we used is based on Theorem G.1, which is described as follows.

• for the MDP M = (S,A, r, P, d1, 2H + 2),

– Initial distribution d1 will always enter state s0, and there are two actions with action
a1 always transitions to syes and action a2 always transitions to sno. The reward at the
first time r1(s, a) = 0 for any s, a.

– For state sno, it will always transition back to itself regardless of the action and receive
reward 0, i.e.

Pt(sno|sno, a) = 1, rt(sno, a) = 0, 8t, 8a.
– For state syes, it will transition to the MDP construction in Theorem G.1 with horizon
2H and syes always receives reward zero.

– For t = 1, choose µ(a1|s0) = 1
2dmSA and µ(a2|s0) = 1 � 1

2dmSA. For t � 2,
choose µ to be uniform policy, i.e. µ(at|st) = 1/A.

Based on this construction, the optimal policy has the form ⇡? = (a1, . . .) and therefore the MDP
branch that enters sno is uninformative. Hence, data collected by that part is uninformed about
the optimal policy and there is only 1

2dmSA proportion of data from syes are useful. Moreover,
by Theorem G.1 the rest of Markov chain succeeded from syes requires ⌦(H3SA/✏2) episodes
(regardless of the exploration strategy/logging policy), so the actual data complexity needed for the
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whole construction (µ,M) is ⌦(H3
SA/✏

2)
dmSA

= ⌦(H3/dm✏2). It remains to check this construction
µ,M stays within Mdm

. Since the only states can receive positive reward 1 are good states (with
t > H + 1), so it suffices to check dµ

t
(gt, a) > dm for all a and t > H + 1. Recall the 2H MDP

construction in Theorem G.1, then it is clear good state gt+1 can only be obtained in the following
two ways:

1. syes, w1, w2, . . . , wt�1, sh,i, gt+1, 2. gu ! gt+1 for some u  t

where i = 1, ..., S � 3 can be any bandit state at time t, therefore by Markov property (of the MDP)

dµ
t+1(gt+1) =

S�3X

i=1

Pµ(gt+1, sh,i, wt�1, . . . , w2, w1, syes) +
tX

u=1

dµ
u
(gu)

=
S�3X

i=1

P(gt+1|sh,i)P(sh,i|wt�1)
t�2Y

s=1

P(ws+1|ws)P(w1|syes)P(syes) +
tX

u=1

dµ
u
(gu)

=
S�3X

i=1

(
1

2
+ ⌧)

1

H(S � 3)
(1� 1

H
)t�1 · dmSA+

tX

u=1

dµ
u
(gu)

= (
1

2
+ ⌧)

1

H
C · dmSA+

tX

u=1

dµ
u
(gu)

� 1

2
· 1

H
C · dmA+

tX

u=1

dµ
u
(gu)

Note 1
2 · 1

H
C · dmA is independent of t, therefore using above by induction it is easy to show

dµ
t+1(gt+1) � C 0 t+ 1

H
dmA,

now use the only states can receive positive reward 1(> ⌫) are good states with t > H , we have
dµ
t+1(gt+1) � C 0dmA,

finally recall µ is uniform, therefore dµ
t+1(gt+1, a) � C 0dmA · 1

A
= ⌦(dm) for all a and t � H .

This concludes the proof.

Remark G.3. A directly corollary is that the sample complexity in Theorem 4.1 part 3. is optimal.
Indeed, for the case ✏opt = 0, Theorem 4.1 implies b⇡ is the ✏-optimal policy learned with sample
complexity O(H3 log(HSA/�)/dm✏2). Theorem G.2 implies this sample complexity cannot be
further reduced up to the logarithmic factor.

G.3 Information theoretical lower sample complexity bound for uniform convergence in
OPE.

By applying Theorem G.2, we can now prove Theorem 3.5.

Proof of Theorem 3.5. We prove it by contradiction. Suppose there is one off-policy evaluation
method bv⇡ such that

sup
⇡2⇧

|bv⇡ � v⇡|  o

0

@
s

H3

dmn

1

A ,

where o(·) represents the standard small o-notation. Then by

0  v⇡
?

� vb⇡
?

= v⇡
?

� bvb⇡
?

+ bvb⇡
?

� vb⇡
?

 |v⇡
?

� bv⇡
?

|+ |bvb⇡
?

� vb⇡
?

|  2 sup
⇡

|v⇡ � bv⇡|.

this OPE method implies a ✏-optimal policy learning algorithm with sample complexity o(H3/dm✏2)
which is smaller than the information theoretical lower bound obtained in Theorem G.2. Contradic-
tion!
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H Proofs of Theorem 4.1

Proof of Theorem 4.1. Part 1. and Part 2. are just direct corollaries. We only prove Part 3. here.
Indeed, by definition of empirical optimal policy we have bQ⇡

?  bQb⇡?

, so we have the following:

Q⇡
?

1 �Qb⇡
1 = Q⇡

?

1 � bQb⇡?

1 + bQb⇡?

1 � bQb⇡
1 + bQb⇡

1 �Qb⇡
1

 Q⇡
?

1 � bQ⇡
?

1 + bQb⇡?

1 � bQb⇡
1 + bQb⇡

1 �Qb⇡
1

 Q⇡
?

1 � bQ⇡
?

1 + ✏opt · 1+ bQb⇡
1 �Qb⇡

1

and bQb⇡
1 �Qb⇡

1 can be bounded by Theorem 3.4 using local uniform convergence. Q⇡
?

1 � bQ⇡
?

1 can be

bounded by O(
q

H3 log(HSA/�)
ndm

) using the similar technique in Section F even without introducing
✏opt since ⇡? is a fixed policy. All these implies:

Q⇡
?

1 �Qb⇡
1 

0

@O(

s
H3 log(HSA/�)

ndm
) + ✏opt

1

A · 1.

Especially when ✏opt = 0 then this is slightly stronger than the stated result since:

v⇡
?

1 �vb⇡?

1 = Q⇡
?

1 (·,⇡?(·))�Qb⇡?

1 (·, b⇡?(·))  Q⇡
?

1 (·,⇡?(·))�Qb⇡?

1 (·,⇡?(·)) 
���Q⇡

?

1 �Qb⇡?

1

���
1

 O(

r
H3 log(HSA/�)

ndm
)·1

I Simulation details

The non-stationary MDP with used for the experiments have 2 states s0, s1 and 2 actions a1, a2 where
action a1 has probability 1 always going back the current state and for action a2, there is one state s.t.
after choosing a2 the dynamic transitions to both states with equal probability 1

2 and the other one
has asymmetric probability assignment ( 14 and 3

4 ). The transition after choosing a2 is changing over
different time steps therefore the MDP is non-stationary and the change is decided by a sequence of
pseudo-random numbers. More formally, Pt can be either

P(s0|s0, a1) = 1;P(s1|s1, a1) = 1;P(·|s0, a2) =
⇢

1
2 , if · = s1
1
2 , if · = s0

; P(·|s1, a2) =
⇢

3
4 , if · = s1
1
4 , if · = s0

or

P(s0|s0, a1) = 1;P(s1|s1, a1) = 1;P(·|s0, a2) =
⇢

1
4 , if · = s1
3
4 , if · = s0

; P(·|s1, a2) =
⇢

1
2 , if · = s1
1
2 , if · = s0

Moreover, to make the learning problem non-trivial we use non-stationary rewards with 4 categories,
i.e. rt(s, a) 2 { 1

4 ,
2
4 ,

3
4 , 1} and assignment of rt(s, a) for each value is changing over time. That

means, one possible assignment can be
rt(s0, a1) = 1/4, rt(s0, a2) = 2/4, rt(s1, a1) = 3/4, rt(s1, a2) = 1/4.

Moreover, the logging policy in Figure 1(b) is uniform with µt(a1|s) = µt(a2|s) = 1
2 for both states.

We implement the non-stationary MDP in the Python environment and pseudo-random numbers
pt, rt’s are generated by keeping numpy.random.seed(100).

We fix episodes n = 2048 and run each algorithm under K = 100 macro-replications with data

D(k) =
n
(s(i)

t
, a(i)

t
, r(i)

t
)
oi2[n],t2[H]

(k)
, and use each D(k) (k = 1, ...,K) to construct a estimator bv⇡[k],

then the (empirical) RMSE for fixed policy is computed as:

RMSE_FIX =

sP
K

k=1(bv⇡[k] � v⇡true)
2

K
,
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and RMSE for suboptimality gap is computed as

RMSE_SUB =

sP
K

k=1(v
b⇡?

[k] � v⇡
?

true)
2

K
,

and RMSE for empirical optimal policy gap is computed as

RMSE_EMPIRICAL =

sP
K

k=1(bvb⇡
?

[k] � vb⇡
?

true)
2

K
,

where v⇡true is obtained by calculating P⇡

t+1,t(s
0|s) =

P
a
Pt+1,t(s0|s, a)⇡t(a|s), the marginal

state distribution d⇡
t

= P⇡

t,t�1d
⇡

t�1, r⇡
t
(st) =

P
at
rt(st, at)⇡t(at|st) and v⇡true =

P
H

t=1

P
st
d⇡
t
(st)r⇡t (st). v⇡

?

true is obtained by running Value Iteration exhaustively until the er-
ror converges to 0. The average relative error for suboptimality (average of |vb⇡

?

[k] � v⇡
?

true|/v⇡
?

true) at
H = 1000 is 0.0011. Lastly, we also show the scaling of |bvb⇡? � vb⇡

? | in Figure 3, which shares a
similar pattern as the suboptimality plot as a whole. 13

101 102 103

Horizon H

10−3
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10−1

100

101

R
oo

t M
SE

 

fixed policy OPEMA/TMIS

| ̂vπ̂ ⋆ − vπ̂ ⋆ |

O(√H3/dm ) Scaling

Figure 3: Log-log plot showing the dependence on horizon of uniform OPE and pointwise OPE via
learning (|v̂b⇡? � vb⇡

? |) over a non-stationary MDP example.

J On improvement over vanilla simulation lemma for fixed policy evaluation

Vanilla simulation lemma, Lemma 1 of Jiang (2018). Without loss of generality, assuming
reward is determinsitic function over state-action. By definition of Bellman equation, we have the
following:

bV ⇡

t
= r + bP⇡

t+1
bV ⇡

t+1, V ⇡

t
= r + P⇡

t+1V
⇡

t+1,

define ✏P = sup
t,st,at

|| bPt(·|st, at)�Pt(·|st, at)||1, then by Hoeffding’s inequality and union bound,
with probability 1� �,

✏P  S· sup
t,st,at

|| bPt(·|st, at)�Pt(·|st, at)||1  S· sup
t,st,at

O

 s
log(HSA/�)

nst,at

1(Et)

!
= O

0

@
s

S2 log(HSA/�)

n · dm

1

A

13Here we do point out the empirical dependence on H for |bvb⇡?

� vb⇡?

| in the Figure 3 is actually less than
H1.5, this comes from that the MDP example we choose is not the “hardest” example for quantity |bvb⇡?

� vb⇡?

|,
as opposed to quantity |v? � vb⇡?

| in Figure 1.
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then
bV ⇡

t
� V ⇡

t
= bP⇡

t+1
bV ⇡

t+1 � P⇡

t+1V
⇡

t+1


⇣��� bP⇡

t+1 � P⇡

t+1

���
1

���bV ⇡

t+1

���
1

+
��P⇡

t+1

��
1

���bV ⇡

t+1 � V ⇡

t+1

���
1

⌘
· 1


⇣
H✏P +

���bV ⇡

t+1 � V ⇡

t+1

���
1

⌘
· 1,

solving recursively, we have

���bV ⇡

1 � V ⇡

1

���
1

 H2✏P  O

0

@
s

H4S2 log(HSA/�)

n · dm

1

A .

This verifies SL has complexity eO(H4S2/dm✏2). We do point out above standard analysis can be
improved (e.g. Jiang (2018) Section 2.2) to Õ(H4S/dm✏2), then in this case our analysis (Lemma 3.2)
has an improvement of H2S with respect to the modified result.

K Algorithms

Algorithm 1 OPEMA

Input: Logging data D = {{s(i)
t
, a(i)

t
, r(i)

t
}H
t=1}ni=1 from the behavior policy µ. A target policy ⇡

which we want to evaluate its cumulative reward.
1: Calculate the on-policy estimation of initial distribution d1(·) by bd1(s) := 1

n

P
n

i=1 1(s
(i)
1 = s),

and set bdµ1 (·) := bd1(·), bd⇡1 (s) := bd1(·).
2: for t = 2, 3, . . . , H do
3: Choose all transition data at time step t, {s(i)

t
, a(i)

t
, r(i)

t
}n
i=1.

4: Calculate the on-policy estimation of dµ
t
(·) by bdµ

t
(s) := 1

n

P
n

i=1 1(s
(i)
t

= s).

5: Set the off-policy estimation of bPt(st|st�1, at�1):

bPt(st|st�1, at�1) :=

P
n

i=1 1[(s
(i)
t
, a(i)

t�1, s
(i)
t�1) = (st, st�1, at�1)]

nst�1,at�1

when nst�1,at�1 > 0. Otherwise set it to be zero.
6: Estimate the reward function

brt(st, at) :=
P

n

i=1 r
(i)
t
1(s(i)

t
= st, a

(i)
t

= at)
P

n

i=1 1(s
(i)
t

= st, a
(i)
t

= at)
.

when nst,at
> 0. Otherwise set it to be zero.

7: Set bd⇡
t
(·, ·) according to bd⇡

t
= bP⇡

t
bd⇡
t�1, where bd⇡

t
(·, ·) is the estimated state-action distribution.

8: end for
9: Substitute the all estimated values above into bv⇡ =

P
H

t=1hbd⇡t , brti to obtain bv⇡, the estimated
value of ⇡.

Remark K.1. In short, we can see Algorithm 2 requires the splitting data size M which is undecided
by Yin & Wang (2020) and that makes the hyper-parameter requiring additional concrete specifica-
tions to make the data splitting estimator sample efficient. In contrast, OPEMA in Algorithm 1 is
defined without ambiguity and can be implemented without extra work.

Their results require number of episodes in each splitted data M to satisfy eO(
p
nSA) > M >

O(HSA). To achieve data efficiency, they need n ⇡ ⇥(H2SA/✏2) and by that condition M has
to satisfy M ⇡ C ·HSA. In this case, data-splitting version needs to create N = n/M empirical
transition dynamics and each dynamics use H3/N ⇡ C ·H2SA/✏2 episodes which is less than the
lower bound (O(H3)) required for learning. Most critically, due to data-splitting it has N empirical
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Algorithm 2 Data Splitting TMIS in Yin & Wang (2020)

Input: Logging data D = {{s(i)
t
, a(i)

t
, r(i)

t
}H
t=1}ni=1 from the behavior policy µ. A target

policy ⇡ which we want to evaluate its cumulative reward. Requiring splitting data size
M .

1: Randomly splitting the data D evenly into N folds, with each fold |D(i)| = M , i.e. n = M ·N .
2: for i = 1, 2, . . . , N do
3: Use Algorithm 1 to estimate bv⇡(i) with data D(i).
4: end for
5: Use the mean of bv⇡(1), bv⇡(2), ..., bv⇡(N) as the final estimation of v⇡ .

transitions hence it is not clear which transition to plan over. Therefore in this sense their result does
not enables efficient offline learning. Our Analysis for unsplitted version (OPEMA) addresses all
these issues.
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