
Table 1: Variants of DRL Agents used

Methods Batch-Constrained Distributional
DQN 5 5
QRDQN 5 X
IQN 5 X
BCQ X 5
QRBCQ X X
BCD4Rec X X

A Details of Deep RL agents used1

We elaborate on the features contrasting all the RL agents (RAs) as summarized in Table 1.2

A.1 Deep Q-Networks (DQN)3

Deep Q-network (DQN), parameterized by θ is used as a function approximator to estimate the action-4

value function, i.e., Q(s, a) ≈ Qθ(s, a), while encoding states and actions in terms of real-valued5

embedding vectors. We use double DQN (hereafter, DQN refers to the double DQN variant), which6

uses two networks Qθ and Qθ′ to mitigate the overestimation bias of DQN by iteratively minimizing7

the following loss LDQN (θ) estimated over mini-batches of transitions (s, a, r, s′) sampled from8

batch data B:9

LDQN (θ) = Es,a,r,s′ [Lκ(r + γmax
a′

Qθ′(s′, a′)−Qθ(s, a))], (1)

where Lκ is the Huber loss: Lκ(δ) = 0.5δ2 if δ ≤ κ, and κ(|δ| − 0.5κ) otherwise; Qθ′ is the target10

network with parameters θ′ fixed over multiple training steps or update iterations for θ, and θ′ is11

updated to θ after a set number of training steps.12

A.2 Distributional RL with Quantile Regression DQN (QRDQN)13

In QRDQN, a set of K τ -quantiles of the value distribution, {τi}K = { i+0.5
K }K−1i=0 is estimated.14

Instead of estimating just the (expected) value for an action, a K-dimensional vector representing the15

K τ -quantiles is produced. So, the overall output of QR-DQN is of size |A| ×K instead of |A|. The16

loss is computed over all pairs of quantiles as follows:17

LQRDQN (θ) =
1

K2
Es,a,r,s′

[∑
τ

∑
τ ′

lτ

(
r + γmax

a′
Qτ

′

θ′(s′, a′)−Qτθ(s, a)
)]

, (2)

where lτ is the quantile Huber loss lτ (δ) = |τ − I(δ < 0)|Lκ(δ). An estimate of the value can be18

recovered through the mean over the quantiles, and the policy π is defined by greedy selection over19

this value: π(s) = arg maxa
1
K

∑
τ Q

τ
θ(s, a).20

The batch-constrained variants of DQN and QRDQN, i.e. BCQ and QRBCQ are also trained using21

losses LDQN and LQRDQN respectively, but with the additional action constraining criteria for a′:22

a′ = arg max
a′|pM(a′|s′)>β

1

K

∑
τ

Qτθ(s′, a′), (3)

which is same as that used for BCD4Rec.23

A.3 BCD4Rec24

Here we provide additional details for training BCD4Rec in Algorithm 1, and a schematic of25

BCD4Rec contrasting it with vanilla DQN in Fig. 1. IQN without batch constraining is equivalent to26

BCD4Rec with β = 0.27

1

Inner Product

Bi-GRU

...

...

IQN

State-conditioned
Model ()

 Constrained
Action Space

IQN

Quantile Huber Loss

IQN

... ...

i1 i2 i3 i4

 i1 i2 i3 i4 i5

(i1 i2 i3 i4 i5,)
(i1 i2 i3 i4,)

(a) Proposed Approach BCD4Rec

DQN DQN

Huber Loss

DQN

Inner Product

Bi-GRUi1 i2 i3 i4 (i1 i2 i3 i4 i5,)

(i1 i2 i3 i4,)(i1 i2 i3 i4,)
(b) Vanilla DQN

Figure 1: Handling of a tuple (s, a, r, s′) in the proposed approach (BCD4Rec) in contrast to a
traditional DQN. The IQN module in BCD4Rec estimates K quantiles of the value distribution
while vanilla DQN only estimates the expected (mean) value. Furthermore, the state-conditioned
modelM restricts the action space for the BCD4Rec agent. While italic s and a denote the state and
action, bold s and a denote the state and action embeddings, respectively. In the example considered,
we assume the action a to consist of item i5 that is clicked by the user, leading to updated state
s′ = (i1, i2, i3, i4, i5).

Algorithm 1 BCD4Rec
1: Input: Batch B, number of iterations T , targetUpdateRate, mini-batch size N , I.
2: Initialize the Q-network Qτθ (initialize the item embeddings using pre-trained embeddings),

conditional modelM and target network Qτ
′

θ′ with θ′ ← θ.
3: for t = 1, 2, . . . T do
4: Sample mini-batch M of N transitions (s, a, r, s′) from B.
5: a′ = arg maxa′|pM(a′|s′)>β

1
K

∑
τ Q

τ
θ(s′, a′)

6: θ ← arg minθ LBCD(θ)
7: ω ← arg minω −

∑
(s,a)∈M log pM(a|s;ω)

8: If t mod targetUpdateRate = 0 : θ′ ← θ
9: end for

B RecSim Simulation Environment28

We consider the Interest Evolution environment of RecSim1, where the goal is to evaluate RL29

algorithms to keep a user engaged for as long as possible (we consider the maximum episode length30

as 20) by showing relevant items that the user would be interested in. This environment consists of31

three main modules: i. user model, ii. item model, and iii. user choice model, as summarized in32

Algorithm 2. This environment has two user response types: click and skip. A user u is presented33

with a slate sl consisting of k items and a special skip item such that the effective slate size is k + 1.34

The interest or the relevance score I(u, i) of an item i for the user u is defined as per line 10 of the35

algorithm, while su corresponds to a score for the skip item (in this work, we use the relevance score36

for the second-most relevant item for a user as the relevance score for the skip item). The relevance37

scores for the recommended items are used to get the probability of clicking an item from a given38

slate. For each item i ∈ sl, this probability is computed as per line 11, and the action by the user is39

drawn as per this probability distribution. If u clicks on i, the relevance score or the interest for the40

corresponding category is updated as per lines 13− 16. Lines 15− 16 ensure that u′s interests are41

reinforced as the episode progresses, i.e. if u clicks and consumes an item from a category where she42

had high interest to begin with, the interest in that category is likely to go up. We consider the default43

settings of this environment with C = 20 and y as 0.3.44

We consider a random (exploration) policy as one of the behavior policy which is referred to as45

RecSim-1, and results in batch data with lowest CTR. We train an IQN agent (variant of BCD4Rec46

with β = 0) from scratch with ε-greedy exploration (where ε degrades linearly) in online manner. We47

1https://github.com/google-research/recsim

2

https://github.com/google-research/recsim

Algorithm 2 RecSim: Interest Evolution Environment
1: Input: no. of categories, C
2: User model:
3: Interest vector of user u, u = [I1, I2, ..., IC], where Ic ∼ U([−1, 1]) and Ic is user’s interest in

category c
4: Item model:
5: One-hot category vector of item i, i ∈ {0, 1}C
6: User choice model:
7: Given a slate (sl) of size, k + 1 (i.e. list of k recommended items by agent and one skip item),
8: Position of item i in slate pos(i) ∈ {0, 1, ..., k}
9: User u’s interest for item i,

10: I(u, i) =

{
uT i, if pos(i) ∈ {0, 1, ..., k − 1}
su, if pos(i) = k

11: p(u, i) = I(u,i)∑
j∈sl I(u,j)

12: User interest updation:
13: Ic: user u’s interest in category c whose item is consumed
14: ∆(Ic) = (−y|Ic|+ y).(1− Ic) , y ∈ [0, 1]
15: Ic ← Ic + ∆(Ic) with probability [I(u, i) + 1]/2
16: Ic ← Ic −∆(Ic) with probability [1− I(u, i)]/2

Table 2: Details of the datasets used. Here: s:skip, c: click, b: buy.

Statistics Diginetica RecSim
#train sessions 4843 2000
#train tuples 70k 30k
#test sessions 1436 200
#items 6666 200
Response Types {s,c,b} {s,c}
Target Response b c

train this for 1k episodes and select behavior policies at different timesteps of training, referred as48

RecSim-2 and RecSim-3, respectively. We keep the user interest vector u latent (except for optimal49

policy) while training RL agents (online/offline) and non-RL baselines to mimic the SR scenario. For50

online policy, we consider u to be fully observable to an agent.51

The behavior policies are then used to generate logs as batch data for evaluating various approaches52

in batch RL setting. During training, the default rewards of skip:0 and click:4 are used. The agents53

trained using the batch data are compared on 200 previously unseen new users.54

C Evaluation Metrics55

While all RAs are trained in offline fashion using batch data, we evaluate them under two scenarios: i.56

online, and ii. offline, as is common in literature.57

Metrics for online testing: Depending upon the target response type that needs to be maximized by58

the RA, we compute the CTR (click through rate) or the BR (buy rate) as the percentage of responses59

corresponding to the target response type (i.e. buy for DN, click for RecSim) across all episodes or60

sessions. C@X (Coverage@X) denotes the percentage of items from I that are recommended at61

least once across test episodes by the agent within top-X items at any recommendation step.62

Metrics for Offline Evaluation: i) R@X (Recall@X): Given the initial interactions from a test63

session, the task is to re-rank the future interacted ground truth items from the session. We compute64

the standard R@X metric as the percentage of times the eventually clicked or bought items appear in65

the top-X items in the re-ranked list. ii) Q̄: Average over the q-values of the evaluation policy for the66

given state distribution Es∼B[Qθ(s, a)], i.e. the average Q across all states for the action a chosen as67

per the RA policy.68

3

Table 3: Hyperparameters considered and the best hyperparameters obtained using Q̄.

Hyper-parameter (Algorithm) Range Tried Selected-DN Selected-RecSim
Quantiles K (DQN/BCQ) 1 1 1
Quantiles K (QRDQN/QRBCQ) 5, 7, 10 5 5
Quantiles K (IQN/BCD4Rec) 5, 7, 10 5 10
Cosines Number n (IQN/BCD4Rec) 32, 64, 128 64 128
BC Threshold β (BCD4Rec/QRBCQ/BCQ) 0.1, 0.3, 0.5, 0.7, 0.9 0.3 0.5
Learning Rate (All) 0.0003, 0.001, 0.003 0.003 0.003
HiddenSize d (All) 100 100 100
Bi-GRU Layers (All) 2, 3 2 2
Bi-GRU Hidden Units (All) d/2×K d/2×K d/2×K
Discounted Factor γ (All) 0.9 0.9 0.9
Optimizer ADAM ADAM ADAM
Recent positive interactions L 10 10 10
Mini-Batch Size 64 64 64

Table 4: Pearson correlation coefficient (PCC) between online and offline evaluation metrics for
various recommender agents. PCC is computed over the original values for the metrics (value-based),
and by ranking the values and computing correlation over the ranks (rank-based). We observe that Q̄
has higher rank-based as well as value-based correlation with online metrics.

Diginetica RecSim-2
Value-based Rank-based Value-based Rank-based

Algorithm R@3 Q̄ R@3 Q̄ R@3 Q̄ R@3 Q̄
BCQ 0.784 0.786 0.975 0.900 0.705 0.633 0.700 0.600
QRDQN 0.564 0.941 0.627 0.958 0.316 0.653 0.174 0.768
BCD4Rec 0.172 0.943 0.227 0.961 0.531 0.896 0.204 0.898

D Pre-processing and Hyperparameters Selection69

We pre-process the batch data to obtain incremental sessions. Each incremental session results in70

a tuple of (s, a, r, s′). The final data related statistics are available in Table 2. We use 20% of the71

train set as hold-out validation set for tuning the hyperparameters in completely offline manner.72

Selecting the best hyperparameters using only offline logs and metrics while optimizing for the online73

evaluation metrics is a non-trivial task. This demands for the reliable offline evaluation metrics,74

preferably to be highly correlated with the online ones. We consider R@3 and Q̄ as offline evaluation75

metrics (described in Section C). We find Q̄ to be a better metric in comparison to R@3. The76

performance of Q̄ is inline with the performance of online metrics as it is highly correlated with the77

online metrics, as shown in Table 4. We also compare performance of BCQ and QRBCQ in terms of78

online and offline evaluation metrics while considering varying hyperparameters set, as shown in Fig79

2. Results indicate the reliability in considering Q̄ over R@3 for selecting best hyperparameters set.80

The finally selected best hyperparameters are summarized in Table 3. Further, the test environment81

for Diginetica (DN) is a bi-directional GRU of the same size as Q-Networks, and is trained to classify82

the response type for the item recommended by the agent given the items interacted so far.83

0.55
0.60

R@
3

Corr. = 0.784

8 9 10 11 12 13 14
BR

12

14

Q

Corr. = 0.786

(a) BCQ (DN)

0.4

0.6

R@
3

Corr. = 0.564

8 10 12 14 16 18
BR

15

20

Q

Corr. = 0.941

(b) QRBCQ (DN)

0.350

0.375

R@
3

Corr. = 0.705

68.0 68.5 69.0 69.5 70.0 70.5
CTR

6

7

Q

Corr. = 0.633

(c) BCQ (RecSim-2)

0.38

0.40

R@
3

Corr. = 0.316

71.071.572.072.573.073.574.0
CTR

14

16

Q

Corr. = 0.653

(d) QRBCQ (RecSim-2)

Figure 2: Comparison of online evaluation metrics (BR/CTR) with offline evaluation metrics
(R@3/Q̄) for varying values of β and K. The higher correlation between online metric BR/CTR
and the offline metric Q̄ indicates higher reliability of Q̄ over R@3 for hyperparameters selection in
batch RL settings. Same is observed for BCD4Rec.

4

Table 5: Comparison of the learned value distributions of various recommender agents against the
corresponding value distribution from online policy in terms of Wasserstein distance metric for
different user types for RecSim-2.

Users DQN BCQ QRDQN QRBCQ IQN BCD4Rec
User1 0.055 0.039 0.051 0.047 0.039 0.031
User2 0.053 0.043 0.047 0.044 0.047 0.034
User3 0.056 0.052 0.040 0.016 0.036 0.010

2 4 6 8 10
Return

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

DQN
BCQ
QRDQN
QRBCQ
IQN
BCD4Rec
Online

(a) user1 (s0, a0)

2 4 6 8 10
Return

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
ob

ab
ilit

y
(b) user2 (s0, a0)

2 4 6 8 10
Return

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

(c) user3 (s0, a0)

Figure 3: The learned value distributions Zπ(s0, a0) for various agents given same initial state-action
pair (s0, a0) for RecSim-2 agents. Initial (s0, a0) are randomly chosen, and returns are evaluated
across randomly sampled 50 users from three different user types with discounted rewards over 20
steps with γ = 0.9.

E Comparison of learned value distributions of offline RL agents w.r.t.84

Online Policy85

We observe the learned value (return) distributions of various RAs. These RAs are trained using the86

logs generated by RecSim-2 behavior policy. For this, we group the users having maximum interest in87

three randomly chosen categories asUser1, User2 andUser3, respectively. The returns are evaluated88

across randomly selected 50 users from each of the three user types with discounted rewards over 2089

steps with γ = 0.9, given the same initial (s0, a0) pair. We compare these learned value distributions90

against the corresponding value distribution from the online policy using Wasserstein distance. The91

Wasserstein distance related numbers are shown in Table 5 whereas the respective learned value92

distributions are shown in Fig. 3. These results depict that the value distribution obtained using93

BCD4Rec agent is closer to the corresponding value distribution from the online agent in comparison94

to the value distributions obtained from other RAs.95

5

	Details of Deep RL agents used
	Deep Q-Networks (DQN)
	Distributional RL with Quantile Regression DQN (QRDQN)
	BCD4Rec

	RecSim Simulation Environment
	Evaluation Metrics
	Pre-processing and Hyperparameters Selection
	Comparison of learned value distributions of offline RL agents w.r.t. Online Policy

