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1 Related Work1

Learning from diverse offline datasets has shown promise as a technique for learning robot policies2

that can generalize to unseen tasks, objects, and domains [1, 2, 3, 4, 5, 6, 7, 8]. However collecting3

such large and diverse datasets in robotics remains an open, and challenging problem.4

A vast number of prior works have collected datasets for robotic learning under a range of problem5

settings and supervision schemes. One class of approaches uses humans in the loop and collects6

datasets of task demonstrations via teleoperation [9, 7], kinesthetic teaching [10, 11], or scripted7

policies [7]. While these methods can produce useful data, they are difficult to perform at scale,8

across diverse tasks and environments. Alternatively, many other works have explored collecting9

large robotic datasets without humans in the loop for tasks like object re-positioning [1, 4, 6], pushing10

[12, 13] and grasping [2, 14, 15]. While these present a scalable approach to data collection, the11

unsupervised nature of the exploration policy results in only a small portion of the data containing12

meaningful interactions.13

One way to keep the scalability of random exploration, but acquire more relevant interaction, is to14

have an agent learn to explore under an intrinsic reward signal, which is task-agnostic but encourages15

more meaningful interaction. These intrinsic rewards come in many forms, including approaches16

which optimize for visiting novel states [16, 17, 18, 19, 20], the learning progress of the agent [21, 22],17

model uncertainty [23, 24, 25, 26, 27], information gain [24], auxiliary tasks [28], generating and18

reaching goals [29, 30], and state distribution matching [31]. Additionally, a number of these19

approaches [28, 29, 30, 32] have been demonstrated on real robotics problems. However all of these20

methods struggle with the issue of having to explore everything about a potentially vast state space21

when only some portion of it is relevant. We attempt to mitigate this challenge by introducing some22

mild supervision into the exploration problem.23

A seemingly obvious approach to incorporating supervision into the exploration problem is to include24

a task-specific extrinsic reward function which is then combined with the exploration objective. In25

fact most applications of intrinsic motivation in RL do exactly this, and treat the intrinsic reward as26

an additional reward bonus. Other works also leverage more complex approaches to combining value27

functions and exploration [33, 34, 35]. Unlike these works, we focus on the setting which does not28

rely on supervision in the loop of RL, as is needed when providing a reward function online. Like29

this work, some prior works have explored how out of the loop weak supervision can be leveraged30

to acquire better exploratory behavior. These works have explored using supervision ranging from31

demonstrations [36], binary labels about state factors of variation [37], and semantic object labels32

[38] to accelerate exploration. Unlike these approaches, our proposed supervision can be collected in33

a matter of minutes and leads to efficient exploration in real visual scenes of robot manipulation.34

Our method draws inspiration from prior work on reward learning [39, 40] and adversarial imitation35

learning [41]. These approaches aim to tackle the task-specification problem, and learn a discriminator36

over human provided goal state images or demonstrations, which is used to acquire a reward function.37
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In contrast, our work focuses on how to incorporate scalable sources of supervision into robotic38

exploration and data collection. We show that an ensemble of such classifiers can be used to guide39

exploration, and this data can easily be used with any offline reinforcement learning algorithm. By40

considering the two stage batch exploration + batch reinforcement learning approach, our work41

depends far less on the accuracy of the specific classifiers used during data collection, and can42

potentially learn multiple downstream tasks from a single dataset.43

2 Architecture Details44

In this section, we go over implementation details for our method as well as our comparisons.45

During data collection, for each domain (block, door, and drawer domains in simulation as well as the46

real robot domain), all comparisons are trained on an Nvidia 2080 RTX, and all input observations47

are [64, 64, 3]. Each domain leverages an identical architecture, which is described as follows.48

All comparisons use an encoder fenc with convolutional layers (channels, kernel size, stride): [(32,49

4, 2), (32, 3,1), (64, 4, 2), (64,3,1), (128, 4, 2), (128, 3,1), (256, 4, 2), (256, 3,1)] followed by fully50

connected layers of size [512, 2 ×L] where L is the size of the latent space (mean and variance). We51

use a latent space size of 256. All layers except the final are followed by ReLU activation.52

The decoder fdec takes a sample from the latent space of size L and feeds it through fully connected53

layers [128, 128, 128], followed by de-convolutional layers (channels, kernel size, stride): [(128, 5,54

2), (64, 5, 2), (32, 6, 2), (3, 6,2)]. All layers are followed by ReLU activation except the final layer,55

which is followed by a Sigmoid.56

The dynamics model fdyn is an LSTM layer [128] followed by a fully connected network with layers57

[128, 128, 128, L], which are all followed by ReLU activation except the final layer. For all domains,58

BEE and SMM learn just one dynamics models while disagreement learns five of these.59

For BEE, we learn an ensemble of three relevance discriminators. These take a sample from the latent60

space of size L and feed it through fully connected layers [128, 64, 64, 1], which are all followed by61

ReLU activations except the final layer, which is followed by a Sigmoid.62

For SMM, we learn two separate VAEs: one to represent the density over the policy’s visited states63

while the other fits a density model to the human provided relevant states. These two VAEs have the64

same architecture: they both use an encoder genc that takes in a sample from the latent space of size65

L and feeds it through fully connected layers [150, 150], which are followed by ReLU activations.66

This is followed by a fully connected layer [L2] for the mean and variance each, where L2 is the size67

of the latent space. We use L2 = 100. The decoder gdec takes in a sample from the latent space of68

size L2 and feeds it through fully connected layers [150, 150, L], where all layers except the last are69

followed by a ReLU activation.70

3 Training Details71

Acquiring human supervision: For each comparison in each simulated domain, we supply 10072

examples of relevant images. For the block domain, these examples involve the gripper hovering73

over the target block at a random z position in a region of +/- 0.02 in the x and y directions from the74

initial block position. For the door domain, the example images involve the gripper next to the door75

handle with the door set to random angles either between -45 and -5 degrees or between 5 and 4576

degrees. For the drawer domain, the example images involve the gripper near the drawer handle, with77

the drawer open to random amounts between 0 and 0.14. For the robot domain, the example images78

involve the small corner drawer of the desk opened and the robot arm moved to the handle. For each79

comparisons in the robot domain, we only supply 50 examples of relevant images.80

Planning during online data collection (MPC): We collect a dataset of 2,000 episodes, each of81

50 time steps. During online planning, all methods use the cross entropy method (with only one82

iteration) to plan a sequence of actions. For each 50-step episode, we replan every 10 steps, i.e. we83

plan five 10-step trajectories. At each stage of planning, we sample 1000 10-step action sequences84

and sort according to the method used. The agent uniformly randomly chooses one of the top 585

ranked trajectories to execute. With probability 0.1, the agent takes a random action in place of a86

chosen one from the selected trajectory. On the real robot we use the same process, but collect 100087

episodes of 100 time steps each.88

Model training: All models for BEE, disagreement, and SMM are trained with a learning rate of89

1e-3. The main VAE (fenc, fdec) for all methods uses a beta of 1e-3, and the separate VAEs for90
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SMM use beta 0.5, which was the default value used in the codebase of the original paper. After each91

new episode is collected, it is added as a sample of size [50, 3, 64, 64] into the replay buffer. The92

encoder/decoder fenc and fdec as well as the dynamics model (all 5 in the case of disagreement) are93

updated 20 times after each new episode. For SMM, both VAEs are also updated 20 times after each94

epoch. All models are trained using separate Adam optimizers and using random batches of size 3295

length H samples starting from any time step of the most recent 500 episodes, where H is the current96

training horizon for the dynamics model(s).97

For training the dynamics model(s), for the first 50 episodes, we use a training horizon of 2; for98

the next 100 episodes, we use horizon 4; for the 150 episodes after that, we use horizon 8; and for99

all remaining episodes we use horizon 10. For all comparisons, the encoder/decoder fenc and fdec100

are updated for each of the 20 times with 1 batch from observations in the replay buffer that were101

collected online as well as 1 batch from the provided example images. Cropping regularization is102

applied to these input batches by expanding the boundaries by 4 pixels each and then choosing a103

random 64× 64 crop of this larger image. For all simulated experiments, balanced batches of both104

human-provided example images and observations from the replay buffer are used to train the main105

VAE. Hence, all methods in simulation leverage the same human-provided weak supervision. In the106

robot domain (for all methods), the VAE is not trained with balanced batches of the human provided107

images, as there are only a small number (50) such states.108

For BEE, the relevance discriminators are each updated once at the end of the episode. To pre-109

vent overfitting, the discriminators are trained with mixup and input image cropping. For mixup110

regularization, hyperparameter α = 1 is used to control the extent of mixup.111

4 Experimental Details112

For the block, door, and drawer domains, we use a Mujoco simulation built off the Meta-World113

environments [42]. For the robot domain, we consider a real Franka robot operating over a desk,114

which has two drawers as well as a cabinet and multiple objects on top.115

Interaction with Target: For the block and door evaluation of the online data collection, interaction116

is defined as moving the target block or door at least a distance of 0.05 any time during the episode.117

For the drawer domain, interaction is defined as pulling the drawer open by at least 0.03 any time118

during the episode. The drawer begins slightly open (by 0.05 distance). Lastly, for the real robot119

domain, we define two criteria for interaction: (1) touching the handle of the desk’s corner drawer120

and (2) actually moving the drawer open or closed. We do not reset the drawer position between121

episodes, so if an episode ends with the drawer open, the next episode will start with it open.122

Downstream Planning: For all control experiments, evaluation is done by using model predictive123

control with SV2P models trained on the full dataset collected in the batch exploration phase for 100k124

iterations. We plan 10 actions and execute them in the environment five times for a 50 step trial. Each125

stage of planning uses the cross entropy method, sampling 200 10-step action sequences, sorting them126

by the mean pixel distance between the goal and the predicted last state of each trajectory, refitting to127

the top 40, and selecting the lowest cost trajectory.128

SV2P Training: SV2P learns an action-conditioned video prediction model by sampling a latent129

variable and subsequently generating an image prediction with that sample. The architecture and130

losses used here are identical to the original SV2P paper [43]. This architecture is shown in Figure 1,131

which is taken from the original paper. The models are trained to predict the next fifteen frames given132

an input of five frames. All other hyperparameters used for training are default values used in the133

codebase of the original paper.134

Downstream Task Evaluation: In the Open Drawer task, the goal image involves the gripper above135

the drawer handle, which is open to 0.15 distance. Success is defined by opening the drawer at least136

0.03.137

In the Blue Block task, the goal image involves the gripper over the initial blue block position and the138

blue block moved 0.1 to the right. Success is defined as pushing the block more than 0.05 to the right.139

In the Green Block task, the goal image involves the gripper over the initial green block position and140

the green block moved 0.1 to the left and 0.04 downwards. Success is defined as pushing the block141

more than 0.05 to the left.142
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Figure 1: SV2P architecture. SV2P estimates the posterior latent distribution p(z | x0:T ) by learning an
inference network (top) qφ(z | x0:T ) = N (µ(x0:T ), σ(x0:T )). Latent values are sampled from qφ(z | x0:T ),
and the generative network (bottom) takes in the previous frames, latent values, and actions to predict the next
frames. Figure taken from the original paper [43].

In the Door task with five distractors, the goal image involves the gripper above the handle and the143

door opened to 0.35 radians. Success is defined by opening the door to at least 0.15 radians, measured144

at the end of each 50-step episode.145

In the real robot door closing task, we do not use a goal image, but rather train a single reward146

classifier for closing the drawer on a few hundred labeled images. This same reward classifier is used147

with both methods dynamics models. The drawer starts halfway open and is considered success if at148

the end of the episode the drawer is fully closed at the end of the 100 timestep episode.149
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