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A Existing Off-Policy Evaluation Methods

Importance Sampling A common approach to performing off-policy evaluation in RL uses IS or
a family of IS-based estimators that assess the overall performance of the evaluation policy under
consideration. The general IS estimate is given by
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and r(i)t are the cumulative importance ratios and rewards reward

at time step t of trajectory τ (i) ∈ D respectively. Under Assumption 1 and the assumption that πb is
known, it can be shown that the standard IS-estimator is unbiased, however suffers high variance that
grows exponentially in size of the horizon. A variant of IS that often has less variance, while still
being unbiased is Per-Step Importance Sampling (step-IS), where importance ratios are computed for
every time step in a trajectory. That is,
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Note that when the behaviour policy πb is unknown and must be approximated, both IS and step-IS
may not necessarily be unbiased.

Weighted Importance Sampling Having no bias is beneficial, however the high variance of
standard IS estimators hinders their use in many applications, particularly in safety-critical domains.
A variant of IS called Weighted Importance Sampling (WIS) and its per-decision counterpart (step-
WIS), trade this bias for reduced variance, making them more suitable for practical applications
overall. These are given by,
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Doubly Robust Off-Policy Evaluation DR estimators combine DM with IS and have been widely
used in regression (Cassel et al., 1976), contextual bandits (Dudík et al., 2011), and RL (e.g. Thomas
and Brunskill (2016); Jiang and Li (2016)). In RL, the DR estimate is given by,
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The IS part of DR is based on step-IS while the model part relies on Q̂πe and V̂ πe model estimates.
Importantly, the bias of the DR estimator is a product of both the bias of DM and IS. As a result, DR
is unbiased if either IS or DM is unbiased. When the behaviour policy πb is known as we assume
in this paper, Eq. 5 is unbiased. The MRDR estimator modifies classic DR by learning the model
parameter that minimises the variance of the DR estimator.

B Preliminaries

Corollary 1. (Khintchine’s Strong Law of Large Numbers). Let {Xi}∞i=1 be independent and
identically distributed random variables. Then ( 1

n

∑n
i=1Xi)

∞
n=1 is a sequence of random variables

that converges almost surely to E[X1]. Proof: See Sen and Singer (2017).
Corollary 2. (Kolmogorov’s Strong Law of Large Numbers). Let {Xi}∞i=1 be independent but not
necessarily identically distributed random variables. If all Xi have the same mean and bounded
variance, then ( 1

n

∑n
i=1Xi)

∞
n=1 is a sequence of random variables that converges almost surely to

E[X1]. Proof: See Sen and Singer (2017).

C Shaping Control Variates for Off-Policy Evaluation

Lemma 1. 1 The SCOPE estimator for stochastic evaluation policy πe is an unbiased estimator of
the shaped value function V πeM ′ .

Proof:
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Hence given πb, the estimator ρ̂πeSCOPE is unbiased for any choice of potential function Φ.

Lemma 2. (Consistency) SCOPE is a strongly consistent estimator of V πeM ′ i.e. limn→∞ V̂ πeSCOPE =
V πeM ′ almost surely. As a result, this implies that estimators with shaped control variates are
well-posed.

Proof: Since we know the estimate is unbiased from Lemma 1 and our data set D consists
of n independent and identically distributed samples, if Assumptions 1 and 2 hold, we can infer from
Khintchine’s Strong Law of Large Numbers that limn→∞ V̂ πeSCOPE = V πeM ′ .

Corollary 3. (Generalisation to multiple behaviour policies) If we assume that there is a constant
β < ∞ such that ∀(t, i) ∈ N≥0 × 1, . . . , n, ωt ≥ β i.e. that our importance weights are bounded,
then SCOPE is a strongly consistent estimator of V πeM ′ .

Proof: We know from Lemma 1 that the SCOPE estimator is unbiased for i ∈ {1, . . . , n}.
However, when there are multiple behaviour policies, the SCOPE estimate is computed over
a set of n independent but not necessarily identically distributed random variables and we
cannot apply Khintchine’s Strong Law of Large Numbers. Instead we apply Kolmogorov’s
Strong Law of Large Numbers, which requires each random variable to be bounded. As a result,
limn→∞ V̂ πeSCOPE = V πeM ′ .

Theorem 4. The variance of the SCOPE estimator for stochastic evaluation policy πe is given by,
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(7)
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where δ =
∑T−1
t=1 γtφ(st;β)(ω0:t−1 − ω0:t).

Proof:
For ease of notation we drop the parameter β in each of the shaping terms in the derivation below,
however φ remains parameterised by β.
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Similarly for (EPπbτ [V̂ πeSCOPE ])2 we have,
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Now subtracting Eq. 10 from Eq. 9 yields,
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Finally, grouping terms and considering the telescopic series yields the result.

D Empirical Studies

In this section we provide more details of experiments comparing the SCOPE estimator to various
IS estimators as well as DR. We illustrate the performance of SCOPE across 3 different domains
namely, GridWorld, HIV and Cancer Simulators.

D.1 GridWorld

In addition to the experimental results shown in the paper, we compared the performance of SCOPE
to several other baselines such as MAGIC and WDR for the GridWorld domain. These results are
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shown in Figures 2, 1 and 3. The same general trends are visible. Though WDR tends to outperform
DR, it does not perform as well as SCOPE or MRDR in both sparse and dense reward settings.
MAGIC tends to perform similarly to WDR in dense reward settings.

200 400 600 800 1000
Num Trajectories

0

20

40

60

80

M
SE

WIS
stepIS
DR
WDR
MAGIC
MRDR
SCOPE

Figure 1: MSE of SCOPE vs baselines under dense rewards for Gridworld. SCOPE and MRDR
perform similarly.
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Figure 2: MSE of SCOPE vs baselines under sparse rewards for Gridworld. SCOPE outperforms the
baselines.

E Experiments with Simulators

HIV Simulator

Dynamics The immune response to Human Immunodeficiency Virus (HIV) and antiretroviral
therapy has been frequently studied using RL approaches in the past (Ernst et al., 2006; Parbhoo
et al., 2017; Killian et al., 2017). For this task, we consider a dynamical system formulation for
this problem from (Adams et al., 2004; Ernst et al., 2006). Here, a patient’s response to therapy is
modelled in terms of 6 parameters that describe their state in terms of CD4+, CD8+ and macrophage
counts. There are 4 possible actions available at each step depending on whether a particular class
of antiretrovirals is administered or not. The reward function is based on the immune response of a
patient after a period of treatment as in Ernst et al. (2006). The complete dynamics of the model are
described by the set of Equations 15. Here, T1 (T ∗1 ) denotes the number of non-infected (respectively
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Figure 3: Influence of the denseness of reward on MSE. SCOPE outperforms baselines in sparse
reward settings.

infected) CD4+ T-lymphocytes (in cells/ml), T2 (T ∗2 ) the number of non-infected (respectively
infected) macrophages (in cells/ml), V the number of free HI viruses (in copies/ml) and E the
number of cytotoxic T-lymphocytes (in cells/ml). The values of the various parameters of the model
are taken directly are listed in Table 1.

The model consists of two populations of target cells representing CD4+ T-cells and macrophages
respectively (Adams et al., 2004). In particular, the classes of RTIs and PIs are modelled. The model
includes parameters for the drug efficacy of each class of antiretroviral under consideration. These
parameters are ε1 and ε2. They describe how effective the RTI and PI classes of drugs are in reducing
infection respectively (Adams et al., 2004). The model assumes that the RTI class of drugs is more
effective in the CD4+ population of cells than in macrophages where the efficacy is reduced by a
factor of f , f ∈ [0, 1]. The PI class of drugs is only included in equations describing the change
in the viral load under antiretroviral therapy, since these drugs operate by directly interfering with
the formation of viral proteins that are necessary for viral production. The model assumes both
T-cells and macrophages have the same death rates, d1 = d2. Immune effector cells are produced in
response to the presence of infected cells and existing immune effectors. The action of these immune
effector cells triggers lysing of infected T-cells and macrophages which results in their removal from
the system of equations at the rates of m1 and m2 respectively. The rate at which the virus infects
both types of cells is assumed to be different and is given by the parameters k1 and k2 respectively.
Free virus particles are produced by both infected macrophages and infected T-cells; the model
assumes these are produced at the same rate. Adams et al. (2004) demonstrate that when both ε1
and ε2 are zero, the dynamic model has three physical equilibrium points where all the variables are
non-negative. These equilibria are:

(T1, T2, T
∗
1 , T

∗
2 , V, E) = (106, 3 198, 0, 0, 0, 10), (12)

(T1, T2, T
∗
1 , T

∗
2 , V, E) = (967 839, 621, 76, 6, 415, 353 108), (13)

(T1, T2, T
∗
1 , T

∗
2 , V, E) = (163 573, 5, 11 945, 46, 63 919, 24). (14)

Note that Equation 12 is an unstable equilibrium point representing an uninfected individual; Equa-
tions 13 and 14 are the stable equilibrium points representing an infected individual. Specifically,
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Figure 4: (a) Performance comparison of SCOPE on HIV Simulator where ζ = 0.3 for varying
n. (b) Performance comparison of SCOPE on Cancer simulator where ζ = 0.3 for varying n. (c)
Illustration of Gridworld domain where s0 is the start state, G is the goal and X are pit states in the
dense reward setting.

Equation 13 represents an individual with good immune control over the virus.

dT1
dt

= λ1 − d1T1 − (1− ε1)k1V T1

dT2
dt

= λ2 − d2T2 − (1− fε1)k2V T2

dT ∗1
dt

= (1− ε1)k1V T1 − δT ∗1 −m1ET
∗
1

dT ∗2
dt

= (1− fε1)k2V T2 − δT ∗2 −m2ET
∗
2

dV
dt

= (1− ε2)NT δ(T
∗
1 + T ∗2 )− cV − [(1− ε1)ρ1k1T1 + (1− fε1)ρ2k2T2]V

dE
dt

= λE +
bE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kb
E − dE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kd
E − δEE (15)

The reward function is based on the patient’s immune response after treatment as in Ernst et al.
(2006).

Experimental Setup Our data set consists of 1000 trajectories each of approximately 40 time steps.
To demonstrate the effect of sparsity on performance, we sparsify the rewards for both domains by
randomly setting a proportion ζ = 0.3 of the rewards in each trajectory to 0. Our evaluation policy πe
is an ε-greedy policy with ε = 0.4 and γ = 0.9. For our behaviour policy we use a policy that prefers
to using both RTIs and PIs when a patient is far from the steady state and switch to the ε-greedy
policy near the steady state. This is akin to real situations where a clinician might know how to treat
ill patients, but be less certain about how to keep them stable in the long run when their condition is
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more stable.We compared the performance of SCOPE to IS, PDIS, WIS, DR and MRDR. For both
DR and MRDR we train a linear parametric model for our control variates using the last layer of a
feed-forward neural network.

Cancer Simulator The dynamics of the cancer domain follow a set of ODEs described in Ribba
et al. (2012) to model the response of cancer cells to treatment. Here, the state space consists of 4
features for the respective cell counts and medication concentrations. The time steps correspond to
the months in which a clinician chooses to administer a type of therapy or not administer any therapy
at all. Our data set consists of 1000 trajectories each of approximately 40 time steps. The reward
at each time step is given by the total change in the diameter of cancerous cells.To demonstrate the
effect of sparsity on performance, we sparsify the rewards for both domains by randomly setting a
proportion ζ = 0.3 of the rewards in each trajectory to 0. Our evaluation policy πe is an epsilon
greedy policy with ε = 0.4 and γ = 0.9. We then compared the performance of baselines from the
previous section to SCOPE across both of these simulators in Figures 2(a) and 2(b) respectively. For
both of these examples our evaluation policy πe is an epsilon greedy policy with ε = 0.4 and γ = 0.9.
Across both domains, the optimal data split uses 35% of the data for training φ and the remaining
data for OPE.
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Parameters Value Units Description
λ1 10 000 cells

ml.day production rate of CD4+ cells
d1 0.01 1

day death rate of CD4+ cells
ε1 ∈ [0, 1) - efficacy of RTI
ε2 ∈ [0, 1) - efficacy of PI
k1 8.0× 10−7 ml

virions.day infection rate of CD4+ cells
λ2 31.98 cells

ml.day production rate of macrophages
d2 0.01 1

day death rate of macrophages
f 0.34 - reduction of treatment efficacy for macrophages
k2 1.0× 10−4 ml

virions.day infection rate of macrophages
δ 0.7 1

day death rate of infected cell
m1 1.0× 10−5 ml

cells.day immune-induced clearance rate for CD4+ cells
m2 1.0× 10−5 ml

cells.day immune-induced clearance rate for macrophages
NT 100 virions

cell virions produced per infected cell
c 13 1

day natural death rate of virus
ρ1 1 virions

cell average number of virions infecting a CD4+ cell
ρ2 1 virions

cell average number of virions infecting a macrophage
λE 1 cells

ml.day production rate of immune effector/cytotoxic T-cell
bE 0.3 1

day maximum birth rate for cytotoxic T-cell
Kb 100 cells

ml saturation constant for cytotoxic T-cell birth
dE 0.25 1

day maximum death rate for cytotoxic T-cell
Kd 500 cells

ml saturation constant for cytotoxic T-cell death
δE 0.1 1

day natural death rate of cytotoxic T-cells

Table 1: Parameters used in Equations 15.
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