Appendix A Simulation Settings

In this section we detail the simulation settings. Let S;p = S11 = (1,01), Sy =
(1, Rg,Ol,Al,OlAl,Og) So1 = (1, A41,0,), the data is generated sequentially according to:
O; ~Bern(3), 41|0; ~Bem(o (S{OS?)), 03|01, A1, Ry ~ N((1,01, A1,01 A1, Ry)769,2), and
A3|01,04, A1, Ry ~Bern(o (SZOEg + £9503)). Setting (1) has continuous outcomes: R;[S; ~
N (SIOB? + A1 (ST17Y), 1),

R3|S ~ N ( 10895 + 3,03 Ry sin (ﬁ) + A2(S3,1v9), 2). Setting (2) has binary outcomes:
P(Ry = 1|S1) = o (SoB] + A1 (S]17Y),

P(R; = 1/S3) = o (S3o85 + B%03 Ry sin (o ) + A2(Shid).

To explore the method’s performance under model miss—speciijlcation we vary 627, &6 € (—1,1),
and we fit models Q;(S1, A1) = 87,87 + A( A9, Qa(Sa, Ag) = S1,89 + Ax(ST,~9) for

the @ functions, 71(S1) = o (S1,&,) and m2(S2) = o (Shy&,) for the propensity scores. Datasets
are generated using (n N) e {(135,1272),(500,10000)}. Parameters are consistent with [8]:
1

50 (0.3,-0.5)", B89 = (3, 0,0.1, ~0.5)", 89 = (0,0.5,—0.75,0.25, —.75)",
72 = (0,0.5,0.1,—1,-0.1,0,—.5), B89 = (3,0,0.1,—0.5,—0.5,0,.1)", 49 = (1,0.25,0.5),
¢Y =(0,0.5,0.1,—1,-0.1)".

Appendix B Assumptions

Assumption B.1 (a) Sample size for U, and L, are such that n/N — 0 as N,n — oo, (b)
S: € Hy, Xy € X, have finite second moments and compact support in Hy C R, Xy C RPt ¢ =1,2
respectively (c) X1, Yo are nonsingular.

Assumption B.2 Deﬁne the following class of functions:
={Q:: X1 —R|6; €O CRP} t=1,2

with ©1, ©4 open bounded sets, and p1, ps fixed under (I). Suppose the population equations for the
Q functions E[S?(0,)] = 0,t = 1,2 have solutions 01, 04, where

P ] a ]
59(62) = 370;”}33 — Q2(X2;62)]3, S7(61) = 3701||Rz - Q1(X1;61)|3.

The population minimizers satisfy 0; € O, ,t = 1,2.

As discussed assuming model (I)) are likely miss-specified, therefore we establish results for our
doubly robust semi-supervised value function estimator. For this, define the following class of
functions:

W, = {ﬂ't s Hy '—>R|01 € et?ﬁt € Qt}, t=1,2,

under propensity score models 71, 72 in ().

Assumption B.3 Let the population equations E [Sf(st; @t)} = 0,t = 1,2 have solutions £, &,,
where

Si(St:0;) = log [m(st,ét) (d=A)L1 — 7my(Sy; € )}<1—”dt:At}>]7t=1,27

8&
(i) Q1,8 are open, bounded sets and the population solutions satisfy &, € Q,t = 1,2,
(ii) for €,,t = 1,2, 1nf m1(Se; &) > 0,

S:€H1
(iii) fort = 1, 2,

f(8:0) ~E[sisue|[ Ho
inf HE[ St,et)H o >0 ¥>0.

£,:d(&,,€
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Assumption B.4 Functions ma, My, , My, t = 2,3 are such that (i) supg |mS(U)| < o0 8 €

{2, w2, 2wy, 3wy } and (ii) the estimated functions 1 satisfy (ii) supg |5 (U) — ms(U)] = op(1),
ERS {2, wa, 2wWa, 3w2}.

Assumption is standard for empirical process estimation [25]]. In particular (7i7) requires that the
score converges to its population limit in L (IP) norm as defined in Section 3| and a well separated
uniqueness condition for £. Assumption s the propensity score equivalent version of Assumption
??. However note that for this to be satlsﬁed we are relying on the positivity Assumptlon (i1) made in
Section 2} l Finally, from Assumptlon | as we use maximum likelihood estimation for €, there exists
an influence function 9 : H — € such that v/n(€ — €) = n= /23" 4% + op(1) and E[1*] = 0,
E[(¢°)"4%] < oc. Further let 9 = (2], 4p})" be the concatenation of the influence functions from
Theorems ?? & ??. Under assumptions [B.1{B.4|we are now ready to state our theoretical justification
for the value function estimator in equation t[ojl the proof can be found in Appendix ??.

Appendix C Proof of Main Results

[Proof of Proposition .T]|
By Theorem ?? in ... we have Ves,, . — E [Vg ;] = op (1), therefore
_ 1 _
Vasion =V = 52 &)+ E [Vasge| =V + 00 (1),
by Lemma [C.I| we get
_ T _
E Ve, —VZEHl—l(}{Q1 (S1) Q(l)(sl§01)}:| ;
ﬂ-l(sla

thus

‘ZSLDR_V:E[{]‘_WISI}{Ql Q(l)(sl7él)}:|

1 (
if either () or (@) are correct, then IA/S,SLDR —V =op(1).

Lemma C.1 Let Qt, 7w t = 1, 2 be any functions which satisfy Assumptionsand respectively
and define

I(dy = Ay)
7T1(Sl§/£1)
I(dy = A)I(dy = A
m1(S1:€1)m2(S2; €,

Vision (S) = Q1(S1301)+ {Rz - {QAl(ShAl) - Qz(sz;az)]}

)2) {Rs - Q2(52,A2;52)} ;

then the bias term is

Bias (Vssipg, V) =E [Vsae] =V

-=|{1- g Haren-ais}

v [H00 L1 I (050 - s},
where V = E[E[Ry + E[R3|Ss, Ry, Ay

the optimal treatment rule, and QY (X4)
Q9%(S2) = E[R3[S2, Ay = da(S2), Ra].

[Proof of Lemma[C.]|

First note that from the reffitting step, using iterated expectations we have

ds)|S1, A1 = dy]] is the mean population value under
E[Ry + E[R3]|S2, A2 = da(S2), R2][S1, A1 = d1(S1)],

E [fia] = E[fi2 — Y2] + E[Y2] = E |E[Y2[U] — Ya| + E[Y2] = E[Y2],
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and similar for fiy,,, fitw,, t = 2, 3, therefore
Bias (Vssipes V) =E [Visipe| — E[E[Y2 + E[Y3]S2, Y2, Ay = d5]|S1, A1 = di]]

I(le(_slgh) {YQ - [Ql(sl,Al) - éz(sz)} }]

{Yg - Qz(SmAz)} :

—E [QY(81) - Qi(S1)] —E

I(dy = Ay)la(ds;, As))
71(S1)72(S2)
Adding and subtracting Q3°(S,),

+E

I(dy = Ay)
#1(S1)

Q7 (82) - QalS) |

K [I@ = Ay)I(dy = As)

=E[QV(S1) - Qi(S1)] —E{ {YQ +E[Y[S2,da, Y] — Qu(S1, A1)

{Y:s —Qz(s2,A2)}

71(S1)72(S2) ’
using iterated expectations in the second and fourth terms:
i A I(dy = A - A
=E ?*(Sl)—QT(Sl)} —E|E M{Y2+E[Y3|Sz,d2,yz]—Q1(51,A1)} Si1, Ay
L 7'('1(81)

_I(&\l = Al) *0 /& A &
+E _W{ 2°<s2>—@2<82>}]

B _IE I(dy = A1)l2(67gj,A2j)

7AT'l(Sl)ﬁ'Q(SQ) {}/3_@2(327142)} SQ7A271/2 ]
—E [QV"(S1) - Q{(S1)] - E w {E [Y2+E[Y3|sz,d2,y2] Sl,Al} —Ql(sl,Al)}

I(dy = A1) [ vore s A e
aE) L 20<sz>—cz2<sz>}]

I(dy = A1)la(daj, Asj)
71(S1)72(S2)
Using the definitions of QY,t = 1, 2:

E

_|_

{E [Y3[S2, Aa, Ya] — Q2(92,A2)} .

—E[Q)(s1) - Qi(s)] - E l”dm(‘s‘;” [QU81.40) ~ Qu(s1, 41}

—I(Cil =4) 0/& 5. (&

E : -

B Tam 198 - Gt}

—1(671 = Ay)ly(daj, Asy)

71(S1)T2(S2)

assuming A; L A5|So, Y> using iterated expectations where we condition on A; = dy:
- R 0 S ) a

:E O*S _ *S —]E wl( 1 O*S o S
@0 - Qitsy)] - & [ 418 {Qtr 50 - Quts)

{0 - s}

+E {Qg(sz,Az) - Qz(sszz)}

)

+E

+E




finally, factorizing common terms:

—e[{1- B8 fors:) - aiisn}]

71(S1)
=l - e ere -]
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