Appendix A Simulation Settings

In this section we detail the simulation settings. Let $\mathbf{S}_{10}=\mathbf{S}_{11}=\left(1, O_{1}\right), \mathbf{S}_{20}=$ $\left(1, R_{2}, O_{1}, A_{1}, O_{1} A_{1}, O_{2}\right), \mathbf{S}_{21}=\left(1, A_{1}, O_{2}\right)$, the data is generated sequentially according to: $O_{1} \sim \operatorname{Bern}\left(\frac{1}{2}\right), A_{1}\left|O_{1} \sim \operatorname{Bern}\left(\sigma\left(\mathbf{S}_{10}^{\top} \boldsymbol{\xi}_{1}^{0}\right)\right), O_{2}\right| O_{1}, A_{1}, R_{2} \sim \mathcal{N}\left(\left(1, O_{1}, A_{1}, O_{1} A_{1}, R_{2}\right)^{\top} \boldsymbol{\delta}_{1}^{0}, 2\right)$, and $A_{2} \mid O_{1}, O_{2}, A_{1}, R_{2} \sim \operatorname{Bern}\left(\sigma\left(\mathbf{S}_{20}^{\top} \boldsymbol{\xi}_{2}^{0}+\xi_{26}^{0} O_{2}^{2}\right)\right)$. Setting (1) has continuous outcomes: $R_{2} \mid \mathbf{S}_{1} \sim$ $\mathcal{N}\left(\mathbf{S}_{10}^{\top} \boldsymbol{\beta}_{1}^{0}+A_{1}\left(\mathbf{S}_{11}^{\top} \gamma_{1}^{0}\right), 1\right)$,
$R_{3} \left\lvert\, \mathbf{S}_{2} \sim \mathcal{N}\left(\mathbf{S}_{20}^{\top} \boldsymbol{\beta}_{2}^{0}+\beta_{27}^{0} O_{2}^{2} R_{2} \sin \left(\frac{1}{O_{2}^{2} R_{2}}\right)+A_{2}\left(\mathbf{S}_{21}^{\top} \gamma_{2}^{0}\right), 2\right)\right.$. Setting (2) has binary outcomes:
$\mathbb{P}\left(R_{2}=1 \mid \mathbf{S}_{1}\right)=\sigma\left(\mathbf{S}_{10}^{\top} \boldsymbol{\beta}_{1}^{0}+A_{1}\left(\mathbf{S}_{11}^{\top} \gamma_{1}^{0}\right)\right.$,
$\mathbb{P}\left(R_{3}=1 \mid \mathbf{S}_{2}\right)=\sigma\left(\mathbf{S}_{20}^{\top} \boldsymbol{\beta}_{2}^{0}+\beta_{27}^{0} O_{2}^{2} R_{2} \sin \left(\frac{1}{O_{2}^{2} R_{2}}\right)+A_{2}\left(\mathbf{S}_{21}^{\top} \gamma_{2}^{0}\right)\right.$,
To explore the method's performance under model miss-specification, we vary $\beta_{27}, \xi_{26} \in(-1,1)$, and we fit models $Q_{1}\left(\mathbf{S}_{1}, A_{1}\right)=\mathbf{S}_{10}^{\top} \boldsymbol{\beta}_{1}^{0}+A_{1}\left(\mathbf{S}_{11}^{\top} \gamma_{1}^{0}\right), Q_{2}\left(\check{\mathbf{S}}_{2}, A_{2}\right)=\check{\mathbf{S}}_{20}^{\top} \boldsymbol{\beta}_{2}^{0}+A_{2}\left(\mathbf{S}_{21}^{\top} \boldsymbol{\gamma}_{2}^{0}\right)$ for the Q functions, $\pi_{1}\left(\mathbf{S}_{1}\right)=\sigma\left(\mathbf{S}_{10}^{\top} \boldsymbol{\xi}_{1}\right)$ and $\pi_{2}\left(\check{\mathbf{S}}_{2}\right)=\sigma\left(\mathbf{S}_{20}^{\top} \boldsymbol{\xi}_{2}\right)$ for the propensity scores. Datasets are generated using $(n, N) \in\{(135,1272),(500,10000)\}$. Parameters are consistent with [8]: $\boldsymbol{\xi}_{1}^{0}=(0.3,-0.5)^{\top}, \boldsymbol{\beta}_{1}^{0}=(3,0,0.1,-0.5)^{\top}, \boldsymbol{\delta}_{1}^{0}=(0,0.5,-0.75,0.25,-.75)^{\top}$,
$\gamma_{2}^{0}=(0,0.5,0.1,-1,-0.1,0,-.5)^{\top}, \boldsymbol{\beta}_{2}^{0}=(3,0,0.1,-0.5,-0.5,0, .1)^{\top}, \gamma_{2}^{0}=(1,0.25,0.5)^{\top}$, $\boldsymbol{\xi}_{2}^{0}=(0,0.5,0.1,-1,-0.1)^{\top}$.

Appendix B Assumptions

Assumption B. 1 (a) Sample size for \mathcal{U}, and \mathcal{L}, are such that $n / N \longrightarrow 0$ as $N, n \longrightarrow \infty$, (b) $\check{\mathbf{S}}_{t} \in \mathcal{H}_{t}, \check{\mathbf{X}}_{t} \in \mathcal{X}_{t}$ have finite second moments and compact support in $\mathcal{H}_{t} \subset \mathbb{R}^{q_{t}}, \mathcal{X}_{t} \subset \mathbb{R}^{p_{t}} t=1,2$ respectively (c) Σ_{1}, Σ_{2} are nonsingular.

Assumption B. 2 Define the following class of functions:

$$
\mathcal{Q}_{t} \equiv\left\{Q_{t}: \mathcal{X}_{1} \mapsto \mathbb{R} \mid \boldsymbol{\theta}_{1} \in \Theta_{1} \subset \mathbb{R}^{p_{t}}\right\}, t=1,2
$$

with Θ_{1}, Θ_{2} open bounded sets, and p_{1}, p_{2} fixed under (7). Suppose the population equations for the Q functions $\mathbb{E}\left[S_{t}^{\theta}\left(\boldsymbol{\theta}_{t}\right)\right]=\mathbf{0}, t=1,2$ have solutions $\overline{\boldsymbol{\theta}}_{1}, \boldsymbol{\theta}_{2}$, where

$$
S_{2}^{\theta}\left(\boldsymbol{\theta}_{2}\right)=\frac{\partial}{\partial \boldsymbol{\theta}_{2}^{\top}}\left\|R_{3}-Q_{2}\left(\check{\mathbf{X}}_{2} ; \boldsymbol{\theta}_{2}\right)\right\|_{2}^{2}, S_{1}^{\theta}\left(\boldsymbol{\theta}_{1}\right)=\frac{\partial}{\partial \boldsymbol{\theta}_{1}^{\top}}\left\|R_{2}^{*}-Q_{1}\left(\check{\mathbf{X}}_{1} ; \boldsymbol{\theta}_{1}\right)\right\|_{2}^{2}
$$

The population minimizers satisfy $\overline{\boldsymbol{\theta}}_{t} \in \Theta_{t}, t=1,2$.
As discussed assuming model (1) are likely miss-specified, therefore we establish results for our doubly robust semi-supervised value function estimator. For this, define the following class of functions:

$$
\mathcal{W}_{t} \equiv\left\{\pi_{t}: \mathcal{H}_{t} \mapsto \mathbb{R} \mid \boldsymbol{\theta}_{1} \in \Theta_{t}, \boldsymbol{\xi}_{t} \in \Omega_{t}\right\}, t=1,2
$$

under propensity score models π_{1}, π_{2} in (2).
Assumption B. 3 Let the population equations $\mathbb{E}\left[S_{t}^{\xi}\left(\check{\mathbf{S}}_{t} ; \boldsymbol{\Theta}_{t}\right)\right]=\mathbf{0}, t=1,2$ have solutions $\overline{\boldsymbol{\xi}}_{1}, \overline{\boldsymbol{\xi}}_{2}$, where

$$
S_{t}^{\xi}\left(\check{\mathbf{S}}_{t} ; \boldsymbol{\Theta}_{t}\right)=\frac{\partial}{\partial \boldsymbol{\xi}_{t}} \log \left[\pi_{t}\left(\check{\mathbf{S}}_{t} ; \boldsymbol{\xi}_{t}\right)^{I\left(d_{t}=A_{t}\right)}\left\{1-\pi_{t}\left(\check{\mathbf{S}}_{t} ; \boldsymbol{\xi}_{t}\right)\right\}^{\left(1-I\left\{d_{t}=A_{t}\right\}\right)}\right], t=1,2
$$

(i) Ω_{1}, Ω_{2} are open, bounded sets and the population solutions satisfy $\overline{\boldsymbol{\xi}}_{t} \in \Omega_{t}, t=1,2$,
(ii) for $\overrightarrow{\boldsymbol{\xi}}_{t}, t=1,2, \inf _{\mathbf{S}_{t} \in \mathcal{H}_{1}} \pi_{1}\left(\mathbf{S}_{t} ; \overline{\boldsymbol{\xi}}_{t}\right)>0$,
(iii) for $t=1,2$,

$$
\begin{aligned}
\sup _{\boldsymbol{\xi}_{t}}\left\|\mathbb{P}_{n} S_{t}^{\xi}\left(\check{\mathbf{S}}_{t} ; \boldsymbol{\Theta}_{t}\right)-\mathbb{E}\left[S_{t}^{\xi}\left(\check{\mathbf{S}}_{t} ; \boldsymbol{\Theta}_{t}\right)\right]\right\|_{L_{2}(\mathbb{P})} \xrightarrow{p} 0, \\
\inf _{\boldsymbol{\xi}_{t}: d\left(\boldsymbol{\xi}_{t}, \overline{\boldsymbol{\xi}}_{t}\right) \geq \delta}\left\|\mathbb{E}\left[S_{t}^{\xi}\left(\check{\mathbf{S}}_{t} ; \boldsymbol{\Theta}_{t}\right)\right]\right\|_{L_{2}(\mathbb{P})}>0, \forall \delta>0 .
\end{aligned}
$$

Assumption B. 4 Functions $m_{2}, m_{\omega_{2}}, m_{t \omega_{2}} t=2,3$ are such that (i) $\sup _{\overrightarrow{\mathbf{U}}}\left|m_{s}(\overrightarrow{\mathbf{U}})\right|<\infty, s \in$ $\left\{2, \omega_{2}, 2 \omega_{2}, 3 \omega_{2}\right\}$ and (ii) the estimated functions \hat{m}_{s} satisfy (ii) $\sup _{\overrightarrow{\mathbf{U}}}\left|\widehat{m}_{s}(\overrightarrow{\mathbf{U}})-m_{s}(\overrightarrow{\mathbf{U}})\right|=o_{\mathbb{P}}(1)$, $s \in\left\{2, \omega_{2}, 2 \omega_{2}, 3 \omega_{2}\right\}$.

Assumption B.3 is standard for empirical process estimation [25]. In particular (iii) requires that the score converges to its population limit in $L_{2}(\mathbb{P})$ norm as defined in Section 3 , and a well separated uniqueness condition for $\boldsymbol{\xi}$. Assumption B.4 is the propensity score equivalent version of Assumption ??. However note that for this to be satisfied we are relying on the positivity Assumption (ii) made in Section 2 Finally, from Assumption B.3 as we use maximum likelihood estimation for $\widehat{\boldsymbol{\xi}}$, there exists an influence function $\boldsymbol{\psi}^{\xi}: \mathcal{H} \mapsto \Omega$ such that $\sqrt{n}(\widehat{\boldsymbol{\xi}}-\overline{\boldsymbol{\xi}})=n^{-1 / 2} \sum_{i=1}^{n} \boldsymbol{\psi}_{i}^{\boldsymbol{\xi}}+o_{\mathbb{P}}(1)$ and $\mathbb{E}\left[\boldsymbol{\psi}^{\xi}\right]=0$, $\mathbb{E}\left[\left(\boldsymbol{\psi}^{\xi}\right)^{\top} \boldsymbol{\psi}^{\xi}\right]<\infty$. Further let $\boldsymbol{\psi}^{\theta}=\left(\boldsymbol{\psi}_{1}^{\top}, \boldsymbol{\psi}_{2}^{\top}\right)^{\top}$ be the concatenation of the influence functions from Theorems ?? \& ??. Under assumptions B.1 B.4 we are now ready to state our theoretical justification for the value function estimator in equation (6), the proof can be found in Appendix ??.

Appendix C Proof of Main Results

[Proof of Proposition 4.1]
By Theorem ?? in ... we have $\widehat{V}_{\text {SSL }}$ DR $-\mathbb{E}\left[\mathcal{V}_{\bar{\Theta}, \bar{\mu}}\right]=o_{\mathbb{P}}(1)$, therefore

$$
\widehat{V}_{\mathrm{SSL}}^{\mathrm{DR}}, ~ \bar{V}=\frac{1}{n} \sum_{i=1}^{n} \psi_{\mathcal{V}}^{s s}\left(\overrightarrow{\mathbf{U}}_{i} ; \overline{\boldsymbol{\theta}}, \overline{\boldsymbol{\xi}}\right)+\mathbb{E}\left[\widehat{V}_{\mathrm{SSL}}^{\mathrm{DR}}, ~\right]-\bar{V}+o_{\mathbb{P}}(1),
$$

by LemmaC. 1 we get

$$
\mathbb{E}\left[\mathcal{V}_{\overline{\boldsymbol{\Theta}}, \bar{\mu}}\right]-\bar{V}=\mathbb{E}\left[\left\{1-\frac{\pi_{1}\left(\mathbf{S}_{1}\right)}{\pi_{1}\left(\mathbf{S}_{1} ; \overline{\boldsymbol{\xi}}\right)}\right\}\left\{Q_{1}^{o}\left(\mathbf{S}_{1}\right)-Q_{1}^{o}\left(\mathbf{S}_{1} ; \overline{\boldsymbol{\theta}}_{1}\right)\right\}\right]
$$

thus

$$
\widehat{V}_{\mathrm{SSL}}^{\mathrm{DR}}, \bar{V}=\mathbb{E}\left[\left\{1-\frac{\pi_{1}\left(\mathbf{S}_{1}\right)}{\pi_{1}\left(\mathbf{S}_{1} ; \overline{\boldsymbol{\xi}}\right)}\right\}\left\{Q_{1}^{o}\left(\mathbf{S}_{1}\right)-Q_{1}^{o}\left(\mathbf{S}_{1} ; \overline{\boldsymbol{\theta}}_{1}\right)\right\}\right]
$$

if either (1) or (2) are correct, then $\widehat{V}_{\text {SSL }}$ DR $-\bar{V}=o_{\mathbb{P}}(1)$.
Lemma C. 1 Let $\hat{Q}_{t}, \hat{\pi}_{t} t=1,2$ be any functions which satisfy Assumptions B. 2 and B. 3 respectively and define

$$
\begin{aligned}
\mathcal{V}_{\mathrm{SSLR}}(\mathbf{S})=\bar{Q}_{1}\left(\mathbf{S}_{1} ; \widehat{\boldsymbol{\theta}}_{1}\right) & +\frac{I\left(\widehat{d}_{1}=A_{1}\right)}{\pi_{1}\left(\mathbf{S}_{1} ; \widehat{\boldsymbol{\xi}}_{1}\right)}\left\{R_{2}-\left[\hat{Q}_{1}\left(\mathbf{S}_{1}, A_{1}\right)-\bar{Q}_{2}\left(\check{\mathbf{S}}_{2} ; \widehat{\boldsymbol{\theta}}_{2}\right)\right]\right\} \\
& +\frac{I\left(\widehat{d}_{1}=A_{1}\right) I\left(\widehat{d}_{2}=A_{2}\right)}{\pi_{1}\left(\mathbf{S}_{1} ; \widehat{\boldsymbol{\xi}}_{1}\right) \pi_{2}\left(\check{\mathbf{S}}_{2} ; \widehat{\boldsymbol{\xi}}_{2}\right)}\left\{R_{3}-Q_{2}\left(\check{\mathbf{S}}_{2}, A_{2} ; \widehat{\boldsymbol{\theta}}_{2}\right)\right\},
\end{aligned}
$$

then the bias term is

$$
\begin{aligned}
& \operatorname{Bias}\left(\mathcal{V}_{\mathrm{SSL}}^{\mathrm{DR}}, \bar{V}\right) \equiv \mathbb{E}\left[\mathcal{V}_{\mathrm{SS}}^{\mathrm{L}_{\mathrm{DR}}}, \bar{V}\right. \\
& =\mathbb{E}\left[\left\{1-\frac{\pi_{1}^{0}\left(\mathbf{S}_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\right\}\left\{Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{\pi_{1}^{0}\left(\mathbf{S}_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{1-\frac{\pi_{2}^{0}\left(\check{\mathbf{S}}_{2}\right)}{\hat{\pi}_{2}\left(\check{\mathbf{S}}_{2}\right)}\right\}\left\{Q_{2}^{0 *}\left(\check{\mathbf{S}}_{2}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right],
\end{aligned}
$$

where $\bar{V}=\mathbb{E}\left[\mathbb{E}\left[R_{2}+\mathbb{E}\left[R_{3} \mid \mathbf{S}_{2}, R_{2}, A_{2}=\bar{d}_{2}\right] \mid \mathbf{S}_{1}, A_{1}=\bar{d}_{1}\right]\right]$ is the mean population value under the optimal treatment rule, and $Q_{1}^{0 *}\left(\mathbf{X}_{1}\right)=\mathbb{E}\left[R_{2}+\mathbb{E}\left[R_{3} \mid \mathbf{S}_{2}, A_{2}=\bar{d}_{2}\left(\mathbf{S}_{2}\right), R_{2}\right] \mid \mathbf{S}_{1}, A_{1}=\bar{d}_{1}\left(\mathbf{S}_{1}\right)\right]$, $Q_{2}^{0 *}\left(\check{\mathbf{S}}_{2}\right)=\mathbb{E}\left[R_{3} \mid \mathbf{S}_{2}, A_{2}=\bar{d}_{2}\left(\mathbf{S}_{2}\right), R_{2}\right]$.
[Proof of Lemma C.1]
First note that from the reffitting step, using iterated expectations we have

$$
\mathbb{E}\left[\bar{\mu}_{2}\right]=\mathbb{E}\left[\bar{\mu}_{2}-Y_{2}\right]+\mathbb{E}\left[Y_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{2} \mid \overrightarrow{\mathbf{U}}\right]-Y_{2}\right]+\mathbb{E}\left[Y_{2}\right]=\mathbb{E}\left[Y_{2}\right]
$$

and similar for $\bar{\mu}_{\omega_{2}}, \bar{\mu}_{t \omega_{2}}, t=2,3$, therefore

$$
\left.\begin{array}{rl}
\operatorname{Bias}\left(\mathcal{V}_{\mathrm{SSL}}^{\mathrm{DR}}\right.
\end{array}, \bar{V}\right)=\mathbb{E}\left[\mathcal{V}_{\mathrm{SSL}}^{\mathrm{DR}}, ~-\mathbb{E}\left[\mathbb{E}\left[Y_{2}+\mathbb{E}\left[Y_{3} \mid \mathbf{S}_{2}, Y_{2}, A_{2}=\bar{d}_{2}\right] \mid \mathbf{S}_{1}, A_{1}=\bar{d}_{1}\right]\right] \quad \begin{array}{rl}
= & \mathbb{E}\left[Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right]-\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Y_{2}-\left[\hat{Q}_{1}\left(\mathbf{S}_{1}, A_{1}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right]\right\}\right] \\
& +\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right) l_{2}\left(\widehat{d}_{2 j}, A_{2 j}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right) \hat{\pi}_{2}\left(\check{\mathbf{S}}_{2}\right)}\left\{Y_{3}-\hat{Q}_{2}\left(\check{\mathbf{S}}_{2}, A_{2}\right)\right\}\right]
\end{array}\right.
$$

Adding and subtracting $Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)$,

$$
\begin{aligned}
=\mathbb{E}\left[Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right]- & \mathbb{E}\left[\frac { I (\widehat { d } _ { 1 } = A _ { 1 }) } { \hat { \pi } _ { 1 } (\mathbf { S } _ { 1 }) } \left\{Y_{2}+\mathbb{E}\left[Y_{3} \mid \mathbf{S}_{2}, \widehat{d}_{2}, Y_{2}\right]-\hat{Q}_{1}\left(\mathbf{S}_{1}, A_{1}\right)\right.\right. \\
+ & \left.\left.Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right) I\left(\widehat{d}_{2}=A_{2}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right) \hat{\pi}_{2}\left(\check{\mathbf{S}}_{2}\right)}\left\{Y_{3}-\hat{Q}_{2}\left(\check{\mathbf{S}}_{2}, A_{2}\right)\right\}\right]
\end{aligned}
$$

using iterated expectations in the second and fourth terms:

$$
\begin{aligned}
& =\mathbb{E}\left[Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right]-\mathbb{E}\left[\mathbb{E}\left[\left.\frac{I\left(\widehat{d}_{1}=A_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Y_{2}+\mathbb{E}\left[Y_{3} \mid \mathbf{S}_{2}, \bar{d}_{2}, Y_{2}\right]-\hat{Q}_{1}\left(\mathbf{S}_{1}, A_{1}\right)\right\} \right\rvert\, \mathbf{S}_{1}, A_{1}\right]\right] \\
& +\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right] \\
& +\mathbb{E}\left[\mathbb{E}\left[\left.\frac{I\left(\widehat{d}_{1}=A_{1}\right) l_{2}\left(\widehat{d}_{2 j}, A_{2 j}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right) \hat{\pi}_{2}\left(\check{\mathbf{S}}_{2}\right)}\left\{Y_{3}-\hat{Q}_{2}\left(\check{\mathbf{S}}_{2}, A_{2}\right)\right\} \right\rvert\, \mathbf{S}_{2}, A_{2}, Y_{2}\right]\right] \\
& =\mathbb{E}\left[Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right]-\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{\mathbb{E}\left[Y_{2}+\mathbb{E}\left[Y_{3} \mid \mathbf{S}_{2}, \bar{d}_{2}, Y_{2}\right] \mid \mathbf{S}_{1}, A_{1}\right]-\hat{Q}_{1}\left(\mathbf{S}_{1}, A_{1}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{I\left(\hat{d}_{1}=A_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right) l_{2}\left(\widehat{d}_{2 j}, A_{2 j}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right) \hat{\pi}_{2}\left(\check{\mathbf{S}}_{2}\right)}\left\{\mathbb{E}\left[Y_{3} \mid \mathbf{S}_{2}, A_{2}, Y_{2}\right]-\hat{Q}_{2}\left(\check{\mathbf{S}}_{2}, A_{2}\right)\right\}\right]
\end{aligned}
$$

Using the definitions of $Q_{t}^{0}, t=1,2$:

$$
\begin{aligned}
& =\mathbb{E}\left[Q_{1}^{0}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right]-\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Q_{1}^{0}\left(\mathbf{S}_{1}, A_{1}\right)-\hat{Q}_{1}\left(\mathbf{S}_{1}, A_{1}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{I\left(\hat{d}_{1}=A_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{I\left(\widehat{d}_{1}=A_{1}\right) l_{2}\left(\widehat{d}_{2 j}, A_{2 j}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right) \hat{\pi}_{2}\left(\check{\mathbf{S}}_{2}\right)}\left\{Q_{2}^{0}\left(\check{\mathbf{S}}_{2}, A_{2}\right)-\hat{Q}_{2}\left(\check{\mathbf{S}}_{2}, A_{2}\right)\right\}\right]
\end{aligned}
$$

assuming $A_{1} \perp A_{2} \mid \mathbf{S}_{2}, Y_{2}$ using iterated expectations where we condition on $A_{t}=\bar{d}_{t}$:

$$
\begin{aligned}
& =\mathbb{E}\left[Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right]-\mathbb{E}\left[\frac{w_{1}^{0}\left(\mathbf{S}_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{\bar{Q}}_{1}\left(\mathbf{S}_{1}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{w_{1}^{0}\left(\mathbf{S}_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\left\{Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{w_{1}^{0}\left(\mathbf{S}_{1}\right) w_{2}^{0}\left(\check{\mathbf{S}}_{2}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right) \hat{\pi}_{2}\left(\check{\mathbf{S}}_{2}\right)}\left\{Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)-\hat{\bar{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right]
\end{aligned}
$$

finally, factorizing common terms:

$$
\begin{aligned}
& =\mathbb{E}\left[\left\{1-\frac{\pi_{1}^{0}\left(\mathbf{S}_{1}\right)}{\hat{\pi}_{1}\left(\mathbf{S}_{1}\right)}\right\}\left\{Q_{1}^{0 *}\left(\mathbf{S}_{1}\right)-\hat{Q}_{1}^{*}\left(\mathbf{S}_{1}\right)\right\}\right] \\
& +\mathbb{E}\left[\frac{\pi_{1}^{0}\left(\mathbf{S}_{1}\right)}{\frac{\tilde{\pi}_{1}}{}\left(\mathbf{S}_{1}\right)}\left\{1-\frac{\pi_{2}^{0}\left(\check{\mathbf{S}}_{2}\right)}{\hat{\pi}_{2}(\stackrel{\mathbf{S}}{2})}\right\}\left\{Q_{2}^{* 0}\left(\check{\mathbf{S}}_{2}\right)-\hat{\hat{Q}}_{2}\left(\check{\mathbf{S}}_{2}\right)\right\}\right] .
\end{aligned}
$$

