
Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

A ENVIRONMENTS AND DATASETS

We describe the simulated environments and the dataset collection in more detail below.

Environments and Tasks. We evaluate our method in four simulated environments. The first task
is the standard walker task from the DeepMind Control suite (Tassa et al., 2020). The observa-
tions consist of raw 64 × 64 images. The second experiment consists of a modified version of the
D’Claw screw task from the Robel benchmark (Ahn et al., 2019), where the goal of the robot is
to continuously turn the valve as fast as possible. The agent receives a dense negative penalty for
positioning the fingers and a sparse reward whenever it turns the valve. The third environment is
based on the Adroit pen task (Rajeswaran et al., 2018) with a fixed goal, which requires the agent
to flip the pen around and catch it at certain angle. The observation space for both environments
consist of robot proprioception and 128 × 128 raw images. These are challenging environments as
the model needs to merge proprioception and visual information in order to estimate a hard contact
model with realistic physics under a high-dimensional action space (9 and 26 respectively) and a
sparse reward function (for the calw environment). The final simulation experiment is based on a
Sawyer manipulation task, which requires opening a door. The agent received a sparse reward when
the door is fully opened and no reward otherwise. The goal of this environment is to test learning in
a realistic multi-stage robot arm environment with a sparse reward. This is a hard environment, not
solvable with online RL. We provide visualizations of all simulated tasks in Figure 2.

Datasets. Thus, we construct new sets of offline datasets with image observations. Similar to the
protocol by Fu et al. (2020), we create three types of datasets for each task, which are obtained
by training an agent using soft-actor critic (Haarnoja et al., 2018) from the ground-truth state and
recording the corresponding image observations, actions, and rewards. The medium-replay datasets
consist of data from the training replay buffer up to the point where the policy reaches performance
of about half the expert level performance. The goal of these datasets is to test learning on incomplete
training data. The medium-expert datasets consist of the second half of the replay buffer after the
agent reaches medium-level performance. The goal of these datasets is to test learning on a mixture
of data from sub-optimal policies. The expert dataset consist of data sampled from the stochastic
SAC expert policy. The goal of these datasets is to test learning on a thin data distribution.

B ABLATION STUDIES ON VARYING OFFLINE DATASET SIZE

We test the effect of dataset size, given that the data is sampled from the same distribution. We
create a medium-expert dataset of size 1M on the DClaw Screw environment by mixing data from
3 separate policy training runs. We then created two more datasets by sub-sampling by a factor
of 25 and 25 respectively. We observe that LMOPO still performs well in the low-data regime, as
compared to regular latent model-based RL and Offline SLAC.

13

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Figure 3: Agent performance based on dataset size

C VARIATIONAL LATENT MODEL SAMPLES

For samples generated by our variational latent models, see Figure 4.

D IMPLEMENTATION DETAILS

The latent dynamics model and the observation model consist of the following components as in
(Hafner et al., 2020):

Image encoder: ht = Eθ(xt)

Inference model: st ∼ qθ(st|ht, st−1, at−1)

Latent transition model: st ∼ Tθ(st|st−1, at−1)

Reward predictor: rt ∼ pθ(rt|st)
Image decoder: xt ∼ Dθ(xt|st).

(11)

where xt ∈ X , st ∈ S, at ∈ A. We use θ to denote the concatenation of all the parameters
involved in the latent space dynamics model. The latent dynamics model is represented by RSSM.
Specifically, we adopt the latent space representation st = [dt, zt], which consists of a deterministic
dt and a sampled stochastic representation zt. With such a latent space representation, we use the
following components:

Deterministic State Model: dt = fθ(dt−1, zt−1, at−1)

Stochastic Inference Model: zt ∼ qθ(zt|ht, dt)
Ensemble of Transition Models: zt ∼ pθk(zt|dt, zt−1, at−1)

(12)

where ht = Eθ(xt) are observation features as defined in Eq. 11. The deterministic representation
fθ is implemented as a single GRU cell and is shared between the forward and inference models. All
the forward models Tθk , k = 1, . . . ,K in the ensemble share the same deterministic model fθ but
separate stochastic transition models pθk , k = 1, . . . ,K, which are implemented as MLPs. Finally
the stochastic inference model is also implemented as an MLP network.

The encoder network Eθ is modeled as a convolutional neural network. For the DeepMind Control
walker task the network has 4 layers with [32, 64, 128, 256] channels respectively. For the D’Claw
screw environment the convolutional model has 5 layers with [32, 64, 128, 256, 256] channels. All

14

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Figure 4: Samples from the learned variational model. Fist row: ground truth sequence; second row:
posterior model samples; third row: ensemble latent model rollout.

kernels have size 4 and stride 2. The reconstruction model Dθ for DeepMind Control walker task
has 4 layers with [128, 64, 32, 3] channels with kernel size [5, 5, 6, 6] and stride 2. For the D’Claw
screw environment the reconstruction network has 5 layers with [128, 64, 32, 32, 3] with kernel size
[5,5,5,4,4] and stride 2. The reward reconstruction network is a two-layer fully connected network
with 200 units. The deterministic path fθ of the RSSM is modeled as a GRU cell with 200 units. All
the forward Tθi , i = 1, . . . ,K and inference qθ models are 3-layer fully-connected networks with
200 units. The variational model is trained with the Adam optimizer with lr = 6e− 4.

Both the actor and the critic are modeled as fully-connected networks with 3 layers and 200 units.
We use the Adam optimizer with lr = 3e− 4.

E MAIN ALGORITHM

15

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Algorithm 1 LOMPO
Input: model train steps, initial real steps, initial latent steps, number of epochs, epoch real batch,

epoch latent batch, number of models K
for model train steps do

Sample a batch of sequences of raw observations (o1:T , a1:T−1, r1:T−1) from batch datasetDenv
and train variational ensemble model using equation 9 with K models

while size Breal < initial real steps do
Sample a batch of sequences (o1:T , a1:T−1, r1:T−1) from batch dataset Denv

Sample latent states s1:T ∼ qθ(s1:T |o1:T , a1:T−1) from the trained inference model
Add batches st, at, st+1, rt to real replay buffer Breal

while size Blatent < initial latent steps do
Sample a batch of sequences (o1:T , a1:T−1, r1:T−1) from batch dataset Denv
Sample a set of latent states S ∼ qθ(s1:T |o1:T , a1:T−1) from the trained inference model for
s0 ∈ S do

for h ∈ {1 : H} do
Sample a latent transition model from pθj from i = 1, . . . ,K
Sample a random action ah−1 and next state sh ∼ Tθj (s|sh−1, ah−1)
Compute reward r̃h−1 using equation 10 and add (sh−1, ah−1, sh, r̃h−1) to Blatent

for number of epochs do
for number actor-critic steps do

Equally sample batch (st,at, rt, st+1) from Breal ∪ Blatent
Update Qφ(s, a), πφ(a|s) using any off-policy algorithm

for epoch real batch do
Sample a batch of sequences (o1:T , a1:T−1, r1:T−1) from batch dataset Denv

Sample latent states s1:T ∼ qθ(s1:T |o1:T , a1:T−1) from the trained inference model
Add batches st, at, st+1, rt to real replay buffer Breal

for epoch latent batch do
Sample a batch of sequences (o1:T , a1:T−1, r1:T−1) from batch dataset D
Sample a set of latent states S ∼ qθ(s1:T |o1:T , a1:T−1) from the trained inference model

for s0 ∈ S do
for h ∈ {1 : H} do

Sample a latent transition model from Tθj from i = 1, . . . ,K
Sample an action ah−1 ∼ πφ(a|sh−1) and next state sh ∼ Tθj (s|sh−1, ah−1)
Compute reward r̃h−1 using equation 10 and add transition to Blatent

16

	Environments and Datasets
	Ablation Studies on Varying Offline Dataset Size
	Variational Latent Model Samples
	Implementation details
	Main Algorithm

