
Under review as a conference paper at ICLR 2021

APPENDIX:

A CONVERGENCE FOR SOFT POLICY ITERATION

Lemma 1. Consider the soft Bellman backup operator T
⇡,⌧Q(s, a) = r(s, a) +

�Es0⇠P(·|s,a)(V (s0)) where V (s) = Ea⇠⇡(·|s)

h
Q(s, a)� ⌧ log ⇡(a|s)

�(a|s)

i
, then the sequence Q,

T
⇡,⌧Q, (T ⇡,⌧)2Q, · · · , (T ⇡,⌧)kQ will converge to the soft value of ⇡ as k !1.

Proof. We prove the soft Bellman backup operator is a contraction. If we apply T
⇡ to two different

value functions Q and Q0, the max norm distance kQ�Q0
k = maxs,a |Q(s, a)�Q0(s, a)| shrinks.

kT
⇡Q� T

⇡Q0
k = kr(st, at) + �Est+1⇠p(V (st+1))� r(st, at)� �Est+1⇠p(V

0(st+1))k (4)
= �kEst+1⇠p(V (st+1))� Est+1⇠p(V

0(st+1))k

= �kEst+1⇠pEat+1⇠⇡(·|st+1)

Q(st+1, at+1)� ⌧ log

⇡(at+1|st+1)

�(at+1|st+1)

�
�

� Est+1⇠pEat+1⇠⇡(·|st+1)

Q0(st+1, at+1)� ⌧ log

⇡(at+1|st+1)

�(at+1|st+1)

�
k

= �kEst+1⇠pEat+1⇠⇡(·|st+1) [Q(st+1, at+1)�Q0(st+1, at+1)] k

 � max
st+1,at+1

|Q(st+1, at+1)�Q0(st+1, at+1)|

= �kQ�Q0
k

Therefore, the sequence T
⇡,⌧Q, (T ⇡,⌧)2Q, · · · , (T ⇡,⌧)kQ only has one

fixed point. Consider the soft Q value of policy ⇡, Q̃⇡,⌧ (st, at) = rt +

Est+1⇠P(·|st+1,at+1),at+l⇠⇡(·|st+1),st+l+1⇠P(·|st+l,at+l)

hP1
l=1 �

l(r(st+l, at+1)� ⌧ log ⇡(at+l|st+l)
�(at+l|st+l)

)
i
,

we have T
⇡,⌧ Q̃⇡,⌧ (st, at) = Q̃⇡,⌧ (st, at).

k(T ⇡,⌧)kQ� Q̃⇡,⌧
k �k(T ⇡,⌧)k�1

� Q̃⇡,⌧
k �2

k(T ⇡,⌧)k�2Q� Q̃⇡,⌧
k · · · �k

kQ� Q̃⇡,⌧
k ! 0

Thus, (T ⇡,⌧)kQ will converge to the fixed point Q̃⇡,⌧ .

Lemma 2. let ⇡old 2 ⇧ and ⇡new(·|s) = argmax⇡2⇧

h
Ea⇠⇡(·|s)

⇣
Q̃⇡old,⌧ (s, a)� ⌧ log ⇡(a|s)

�(a|s)

⌘i
.

Then Q̃⇡new,⌧ (s, a) � Q̃⇡old,⌧ (s, a) for all (s, a).

Proof. Due to the definition of ⇡new, for any state st, we have
Ea⇠⇡new(·|st)Q̃

⇡old,⌧ (st, a)�⌧KL(⇡new(·|st)|�(·|st)) � Ea⇠⇡old(·|st)Q̃
⇡old,⌧ (st, a)�⌧KL(⇡old(·|st)|�(·|st))

Q̃⇡old,⌧ (st, at) = rt + �Est+1⇠p

h
Ṽ ⇡old,⌧ (st+1)

i
(5)

= rt + Est+1⇠p

h
Eat+1⇠⇡old(·|st+1)Q̃

⇡old,⌧ � ⌧KL(⇡old(·|st+1)|�(·|st+1))
i

 rt + Est+1⇠p

h
Eat+1⇠⇡new(·|st+1)Q̃

⇡old,⌧ (st+1, at+1)� ⌧KL(⇡new(·|st+1)|�(·|st+1))
i

· · ·

· · ·

 Q̃⇡new,⌧ (st, at)

Theorem 2. Repeated application of soft policy evaluation and soft policy improvement converges

to a policy ⇡⇤
⌧

such that Q̃⇡
⇤
⌧ ,⌧ (s, a) � Q̃⇡,⌧ (s, a) for any ⇡ 2 ⇧ and (s, a) 2 S ⇥A.

11

Under review as a conference paper at ICLR 2021

Proof. Let ⇡i be the policy at iteration i. The sequence Q⇡i is monotonically increasing. Since Q⇡

is bounded above (because both reward and KL divergence are bounded), the sequence converges to
some ⇡⇤. We will still need to show that ⇡⇤ is indeed optimal. At convergence, it must be case that:

⇡⇤(·|s) = argmax⇡2⇧

h
Ea⇠⇡(·|s)

⇣
Q̃⇡

⇤
,⌧ (s, a)� ⌧ log ⇡(a|s)

�(a|s)

⌘i

So for any ⇡ 2 ⇧, we have
Ea⇠⇡⇤(·|st)Q̃

⇡
⇤
,⌧ (st, a)�⌧KL(⇡⇤(·|st)|�(·|st)) � Ea⇠⇡(·|st)Q̃

⇡
⇤
,⌧ (st, a)�⌧KL(⇡(·|st)|�(·|st))

Q̃⇡
⇤
,⌧ (st, at) = rt + �Est+1⇠p

h
Ṽ ⇡

⇤
⌧ ,⌧ (st+1)

i
(6)

= rt + Est+1⇠p

h
Eat+1⇠⇡⇤(·|st+1)Q̃

⇡
⇤
⌧ ,⌧ � ⌧KL(⇡⇤(·|st+1)|�(·|st+1))

i

� rt + Est+1⇠p

h
Eat+1⇠⇡(·|st+1)Q̃

⇡
⇤
,⌧ (st+1, at+1)� ⌧KL(⇡(·|st+1)|�(·|st+1))

i

· · ·

· · ·

� Q̃⇡,⌧ (st, at)
We denote this optimal policy ⇡⇤ as ⇡⇤

⌧
in the following. Consider the optimization problem with

hard constraint:

max
⇡(a1|s),⇡(a2|s),··· ,⇡(a|A||s)

|A|X

i=1

⇡(ai|s)Q̃
⇡
⇤
⌧ ,⌧ (s, a)� ⌧

|A|X

i=1

⇡(ai|s) log
⇡(ai|s)

�(ai|s)

s.t.
|A|X

i=1

⇡(ai|s) = 1

Due to KKT condition, let Q̃⇡
⇤
⌧ ,⌧ (s, a) � ⌧ log ⇡(ai|s)

�(ai|s) � ⌧ � � = 0. We have ⇡⇤
⌧
(a|s) =

exp

✓
Q̃⇡⇤

⌧ ,⌧ (s,a)
⌧

◆
�(a|s)

P
ai

exp

✓
Q̃⇡⇤

⌧ ,⌧ (s,ai)
⌧

◆
�(ai|s)

Theorem 3. Let ⇡⇤
⌧
(a|s) be the optimal policy from soft policy iteration with fixed temperature ⌧ .

We have ⇡⇤
⌧
(a|s) / exp

⇣
Q̃

⇡⇤
⌧ ,⌧ (s,a)
⌧

⌘
�(a|s). As ⌧ ! 0, ⇡⇤

⌧
(a|s) will take the optimal action a⇤

with optimal Q value for state s.

Assume there exists a set of optimal actions X(s) for state s. For each action in X(s), its soft Q
value is the optimal for state s. To simplify the notation, in the following proof, we use Q⇤

⌧
to replace

Q̃⇡
⇤
⌧ ,⌧ .

Assume aj 2 X(s), then ⇡⇤
⌧
(aj |s) =

1
P

ai2X(s)
�(ai|s)
�(aj |s)

+
P

ai 62X(s) exp
⇣

Q⇤
⌧ (s,ai)�Q⇤

⌧ (s,aj)

⌧

⌘
�(ai|s)
�(aj |s)

.

For the second term in the denominator, we show it converges to 0 as ⌧ ! 0.

0
P

ai 62X(s) exp
⇣

Q
⇤
⌧ (s,ai)�Q

⇤
⌧ (s,aj)

⌧

⌘
�(ai|s)
�(aj |s)

P
ai 62X(s) exp

⇣
Q

⇤
⌧ (s,asub)�Q

⇤
⌧ (s,aopt)

⌧

⌘
�(ai|s)
�(aj |s)

0
P

ai 62X(s) exp
⇣

Q
⇤
⌧ (s,ai)�Q

⇤
⌧ (s,aj)

⌧

⌘
�(ai|s)
�(aj |s) exp

⇣
Q

⇤
⌧ (s,asub)�Q

⇤
⌧ (s,aopt)

⌧

⌘P
ai 62X(s)

�(ai|s)
�(aj |s)

As ⌧ ! 0, exp
⇣

Q
⇤
⌧ (s,asub)�Q

⇤
⌧ (s,aopt)

⌧

⌘
! 0 and

P
ai 62X(s)

�(ai|s)
�(aj |s) is a constant.

Thus, as ⌧ ! 0, ⇡⇤
⌧
(aj |s)!

1P
ai2X(s)

�(ai|s)
�(aj |s)

= �(aj |s)P
ai2X(s) �(ai|s) if aj 2 X(s).

Assume aj 62 X(s), then ⇡⇤
⌧
(aj |s) =

1
P

ai2X(s) exp
⇣

Q⇤
⌧ (s,aopt)�Q⇤

⌧ (s,aj)

⌧

⌘
�(ai|s)
�(aj |s)

+
P

ai 62X(s) exp
⇣

Q⇤
⌧ (s,ai)�Q⇤

⌧ (s,aj)

⌧

⌘
�(ai|s)
�(aj |s)

.

12

Under review as a conference paper at ICLR 2021

Obviously, exp
⇣

Q
⇤
⌧ (s,aopt)�Q

⇤
⌧ (s,aj)

⌧

⌘
�(ai|s)
�(aj |s) ! +1 as ⌧ ! 0 and

exp
⇣

Q
⇤
⌧ (s,ai)�Q

⇤
⌧ (s,aj)

⌧

⌘
�(ai|s)
�(aj |s) > 0.

Thus, as ⌧ ! 0, ⇡⇤
⌧
(aj |s)! 0 if aj 62 X(s).

13

Under review as a conference paper at ICLR 2021

B CONVERGENCE RATE OF KL REGULARIZED POLICY GRADIENT

Recall our definitions:

V ⇡(⇢) = Es0⇠⇢,at⇠⇡(·|st),st+1⇠P(·|st,at)

" 1X

t=0

�tr(st, at)

#
. (7)

Mei et al. [24] proved that policy gradient with a softmax parameterization and true gradient op-
timizes V ⇡(⇢) at a O(1/t) convergence rate, while the entropy regularized objective V ⇡(⇢) +
⌧H(⇢,⇡) with H(⇢,⇡) = Es0⇠⇢,at⇠⇡(·|st),st+1⇠P(·|st,at) [

P1
t=0(��

t log ⇡(at|st))] enjoys a sig-
nificantly faster linear convergence rate O(e�t).

With a behavior policy � and the ”temperature” ⌧ > 0 that determines the strength of the regular-
ization, we define the value of the policy ⇡ with the KL divergence regularization as

Ṽ ⇡,⌧ (⇢) = V ⇡(⇢)�⌧DKL(⇡||�) = Es0⇠⇢,at⇠⇡(·|st),st+1⇠P(·|st,at)

" 1X

t=0

�t

✓
r(st, at)� ⌧ log

⇡(at|st)

�(at|st)

◆#

(8)

Similarly we prove policy gradient optimizes Ṽ ⇡,⌧ (⇢) at a O(e�t) convergence rate. Here we ex-
plain the sketch of the proof. Ṽ ⇡,⌧ (⇢) can be re-written as V̂ ⇡,⌧ (⇢) + ⌧H(⇢,⇡) where

V̂ ⇡,⌧ (⇢) = Es0⇠⇢,at⇠⇡(·|st),st+1⇠P(·|st,at)

" 1X

t=0

�t(r(st, at) + ⌧ log �(at|st))

#
. (9)

H(⇢,⇡) = Es0⇠⇢,at⇠⇡(·|st),st+1⇠P(·|st,at)

" 1X

t=0

��t log ⇡(at|st)

#
(10)

V̂ ⇡,⌧ (⇢) in eq.(8) is the same as V ⇡(⇢) in eq.(7) if we replace r(st, at) with r(st, at)+⌧ log �(at|st).
Mei et al. [24] assume that r(st, at) 2 [0, 1]. Here we assume r(st, at)+⌧ log �(at|st) 2 [�M,M]
with a constant M , effectively requiring the behavior policy to span the entire state-action space. We
can then adapt the proof in [24] for the new objective Ṽ ⇡,⌧ (⇢). We conclude that in t iterations, the
learned policy ⇡✓t is approaching the optimal policy ⇡⇤

⌧
for the new objective Ṽ ⇡,⌧ (⇢), satisfying

Ṽ ⇡
⇤
⌧ ,⌧ (⇢)� Ṽ ⇡✓t ,⌧ (⇢) 1

exp{C⌧⌦(1)t}
1+⌧ logA

(1��)2 k
1
µ
k1, where C⌧ = (1��)4

(8M/⌧+4+8 logA)·S ·mins µ(s) ·

k
d
⇡⇤
⌧

µ

µ
k
�1
1 and µ is the initial state distribution used in the policy optimization algorithm.

To simplify the notation, in the following proofs, we use Ṽ ⇡(⇢) = Ṽ ⇡,⌧ (⇢) and V̂ ⇡(⇢) = V̂ ⇡,⌧ (⇢).

Assumption 1 (Bounded Reward and Behavior Probability). r(s, a) + ⌧ log �(a|s) 2 [�M,M],
8(s, a) where M is a positive constant.

Definition 1 (Smoothness). A function f : ⇥! R is �-smooth if for all ✓, ✓0 2 ⇥,����f(✓
0)� f(✓)�

⌧
@f(✓)

@✓
, ✓0 � ✓

�����
�

2
k✓0 � ✓k22

Lemma 3 (Monotone Increasing). Assume a function f : ⇥ ! R is �-smooth, and it is updated

with ✓t+1 = ✓t + ⌘ @f(✓)
@✓

and ⌘ = 2
�

, then the function f(✓) is monotone increasing.

f(✓t+1)� f(✓t)�

⌧
@f(✓)

@✓
, ✓t+1 � ✓t

�
� �

�

2
k✓t+1 � ✓tk

2
2

f(✓t+1)� f(✓t) �

⌧
@f(✓)

@✓
, ⌘

@f(✓)

@✓

�
�

�⌘2

2
k
@f(✓)

@✓
k
2
2

= (1�
�⌘

2
)⌘k

@f(✓)

@✓
k
2
2 = 0

Definition 2. Given a vector ✓ 2 R
[K]

and the probability distribution ⇡✓ = softmax(✓) =
exp✓P

k exp✓(k) , then H(⇡✓) is the Jacobian of the ✓ ! ⇡✓ map:
�
d⇡✓
d✓

�T
= H(⇡✓) = diag(⇡✓)�⇡✓⇡T

✓
2

R
K⇥K

.

Lemma 4 (Smoothness). V̂ ⇡✓ (⇢) is
8M

(1��)3 -smooth.

14

Under review as a conference paper at ICLR 2021

Denote ✓↵ = ✓ + ↵u, where ↵ 2 R and u 2 R
SA. For any s 2 S,

X

a

����
@⇡✓↵(a|s)

@↵
|↵=0

���� =
X

a

����

⌧
@⇡✓↵(a|s)

@✓↵
|↵=0,

@✓↵
@↵

�����

=
X

a

����

⌧
@⇡✓(a|s)

@✓
, u

�����

=
X

a

����

⌧
@⇡✓(a|s)

@✓(s, ·)
, u(s, ·)

�����

✓
Because

@⇡✓(a|s)

@✓(s0, ·)
= 0, 8s0 6= s

◆

=
X

a

⇡✓(a|s) ·
��u(s, a)� ⇡✓(·|s)

Tu(s, ·)
�� (Because softmax parameterization)

 max
a

|u(s, a)|+
��⇡✓(·|s)Tu(s, ·)

��

 2kuk2 (11)
X

a

����
@2⇡✓↵(a|s)

@↵2
|↵=0

���� =
X

a

����

⌧
@

@✓↵
{
@⇡✓↵(a|s)

@↵
}|↵=0,

@✓↵
@↵

�����

=
X

a

����

⌧
@2⇡✓↵(a|s)

@✓2
↵

|↵=0
@✓↵
@↵

,
@✓↵
@↵

�����

=
X

a

����

⌧
@2⇡✓(a|s)

@✓2(s, ·)
u(s, ·), u(s, ·)

�����

=
X

a

������

AX

i=1

AX

j=1

Si,ju(s, i)u(s, j)

������
(Si,j is the i,j-th element of

@2⇡✓(a|s)

@✓2(s, ·)
)

=
X

a

⇡✓(a|s)|u(s, a)
2
� 2u(s, a)⇡✓(·|s)

Tu(s, ·)

� ⇡✓(·|s)
T (u(s, ·)� u(s, ·)) + 2(⇡✓(·|s)

Tu(s, ·))2|

 max
a

{u(s, a)2 + 2
��u(s, a)⇡✓(·|s)Tu(s, ·)

��}

+ ⇡✓(·|s)
T (u(s, ·)� u(s, ·)) + 2(⇡✓(·|s)

Tu(s, ·))2

 ku(s, ·)k22 + 2ku(s, ·)k22 + ku(s, ·)k
2
2 + 2ku(s, ·)k22

 6kuk22 (12)

Define P (↵) 2 R
S⇥S , 8(s, s0), [P (↵)](s,s0) =

P
a
⇡✓↵(a|s)P(s0|s, a) For any vector x 2 R

S , the
l1 norm is ����

@P (↵)

@↵
|↵=0x

����
1

= max
s

�����

@P (↵)

@↵
|↵=0x

�

(s)

�����

= max
s

�����
X

s0

@P (↵)

@↵
|↵=0

�

(s,s0)

x(s0)

�����

= max
s

�����
X

s0

X

a

@⇡✓↵(a|s)

@↵
|↵=0

�
P (s0|s, a)x(s0)

�����

 max
s

X

a

X

s0

P(s0|s, a) ·

����
@⇡✓↵(a|s)

@↵
|↵=0

���� · kxk1

= max
s

X

a

����
@⇡✓↵(a|s)

@↵
|↵=0

���� · kxk1

 2 · kuk2 · kxk1 (13)

15

Under review as a conference paper at ICLR 2021

����
@2P (↵)

@↵2
|↵=0x

����
1

= max
s

�����

@2P (↵)

@↵2
|↵=0x

�

(s)

�����

= max
s

�����
X

s0

@2P (↵)

@↵2
|↵=0

�

(s,s0)

x(s0)

�����

= max
s

�����
X

s0

X

a

@2⇡✓↵(a|s)

@↵2
|↵=0

�
P (s0|s, a)x(s0)

�����

 max
s

X

a

X

s0

P(s0|s, a) ·

����
@2⇡✓↵(a|s)

@↵2
|↵=0

���� · kxk1

= max
s

X

a

����
@2⇡✓↵(a|s)

@↵2
|↵=0

���� · kxk1 6 · kuk22 · kxk1 (14)

Consider the KL regularized value function of ⇡✓↵ .
V̂ ⇡✓↵ (s) =

X

a

⇡✓↵(a|s)(r(s, a)+⌧ log �(a|s))+�
X

a

⇡✓↵(a|s)
X

s0

P(s0|s, a)V̂ ✓↵(s0) = eT
s
M(↵)r✓↵

where es is an indicator vector for the starting state s, M(↵) = (Id � P (↵))�1 =
P1

t=0 �
tP (↵)t,

and r✓↵(s) =
P

a
⇡✓↵(a|s)(r(s, a) + ⌧ log �(a|s)).

Taking derivative with respect to ↵:
@V̂ ⇡✓↵ (s)

@↵
= �eT

s
M(↵)

@P (↵)

@↵
M(↵)r✓↵ + eT

s
M(↵)

@r✓↵
@↵

(15)
Taking second derivative with respect to ↵:

@2V̂ ⇡✓↵ (s)

@↵2
= 2�2eT

s
M(↵)

@P (↵)

@↵
M(↵)

@P (↵)

@↵
M(↵)r✓↵ + �2eT

s
M(↵)

@2P (↵)

@↵2
M(↵)r✓↵

+ 2�eT
s
M(↵)

@P (↵)

@↵
M(↵)

@r✓↵
@↵

+ eT
s
M(↵)

@2r✓↵
@↵2

(16)

kM(↵)xk1 = max
i

��[M(↵)]T
i,:x

��

 max
i

k[M(↵)]i,:k1 · kxk1

=
1

1� �
· kxk1(Because 1 =

1

1� �
· (Id� �P (↵))1,M(↵)1 =

1

1� �
1) (17)

kr✓↵k1 = max
s

|r✓↵(s)|

= max
s

�����
X

a

⇡✓↵(a|s)(r(s, a) + ⌧ log �(a|s))

�����

M(Because of the range of r(s, a) + ⌧ log �(a|s)) (18)

16

Under review as a conference paper at ICLR 2021

����
@r✓↵
@↵

����
1

= max
s

����
@r✓↵(s)

@↵

����

= max
s

�����

✓
@r✓↵(s)

@✓↵

◆T @✓↵
@↵

�����

= max
s

�����

✓
@{⇡✓↵(·|s)

T (r(s, ·) + ⌧ log �(·|s))}

@✓↵

◆T

u(s, ·)

�����

= max
s

��(H(⇡✓↵(·|s))(r(s, ·) + ⌧ log �(·|s)))Tu(s, ·)
��

 max
s
kH(⇡✓↵(·|s))(r(s, ·) + ⌧ log �(·|s))k1 · ku(s, ·)k1

= max
s

(
X

a

⇡✓↵(a|s) ·
��r(s, a) + ⌧ log �(a|s)� ⇡✓↵(·|s)

T (r(s, ·) + ⌧ log �(·|s))
��)ku(s, ·)k1

 max
s

max
a

��r(s, a) + ⌧ log �(a|s)� ⇡✓↵(·|s)
T (r(s, ·) + ⌧ log �(·|s))

�� · ku(s, ·)k1

 2Mkuk2 (19)
����
@2r✓↵
@↵2

����
1

= max
s

����
@2r✓↵(s)

@↵2

����

= max
s

�����

✓
@

@✓↵

⇢
@r✓↵(s)

@↵

�◆T @✓↵
@↵

�����

= max
s

�����

✓
@2r✓↵(s)

@✓2
↵

@✓↵
@↵

◆T
@✓↵
@↵

�����

= max
s

����u(s, ·)
T
@2

{⇡✓↵(·|s)
T (r(s, ·) + ⌧ log �(·|s))}

@✓↵(s, ·)2
u(s, ·)

����

= max
s

������

AX

i=1

AX

j=1

Si,ju(s, i)u(s, j)

������
(Si,j is the i,j-th element of the second derivative)

= max
s

|

X

i

⇡✓↵(s, ·, i)(r(s, i) + ⌧ log �(i|s)� ⇡✓↵(·|s)
T (r(s, ·) + ⌧ log �(·|s)))u(s, i)2

� 2
X

i

⇡✓↵(i|s)(r(s, i) + ⌧ log �(i|s)� ⇡✓↵(·|s)
T (r(s, ·) + ⌧ log �(·|s)))u(s, i)

X

j

⇡✓↵(j|s)u(s, j)|

= max
s

|(H(⇡✓↵)(r(s, ·) + ⌧ log �(·|s)))T (u(s, ·)� u(s, ·))

� 2(H(⇡✓↵)(r(s, ·) + ⌧ log �(·|s)))Tu(s, ·)(⇡T

✓↵
u(s, ·))|

 max
s

(kH(⇡✓↵)(r(s, ·) + ⌧ log �(·|s)))k1 · ku(s, ·)� u(s, ·)k1

+ 2kH(⇡✓↵)(r(s, ·) + ⌧ log �(·|s)))k1 · ku(s, ·)k1 · k⇡✓↵k1 · ku(s, ·)k1)

 max
s

(kH(⇡✓↵)(r(s, ·) + ⌧ log �(·|s)))k1 · ku(s, ·)k22(Because ku(s, ·)� u(s, ·)k1 = ku(s, ·)k22)

+ 2kH(⇡✓↵)(r(s, ·) + ⌧ log �(·|s)))k1 · ku(s, ·)k
2
2)(Because k⇡✓↵k1 = 1, ku(s, ·)k1 ku(s, ·)k2)

 max
s

(max
i

��Hi,:(⇡✓↵)
T (r(s, ·) + ⌧ log �(·|s)))

�� ku(s, ·)k22 + 2 · 2M · ku(s, ·)k22)

 max
s

max
i

kHi,:(⇡✓↵)k1 · kr(s, ·) + ⌧ log �(·|s))k1 · ku(s, ·)k22 + 4Mku(s, ·)k22

 max
s

max
i

(⇡✓↵(i|s)� ⇡✓↵(i|s)
2 + ⇡✓↵(i|s)(1� ⇡✓↵(i|s))) ·M · ku(s, ·)k22 + 4Mku(s, ·)k22

1

2
Mku(s, ·)k22 + 4Mku(s, ·)k22 6Mku(s, ·)k22 (20)

17

Under review as a conference paper at ICLR 2021

For the first term of Eq. 16, according to Eq. 17,13,18����e
T

s
M(↵)

@P (↵)

@↵
M(↵)

@P (↵)

@↵
M(↵)r✓↵ |↵=0

����
����M(↵)

@P (↵)

@↵
M(↵)

@P (↵)

@↵
M(↵)r✓↵ |↵=0

����
1

1

1� �
· 2 · kuk2 ·

1

1� �
· 2 · kuk2 ·

1

1� �
·M

=
4M

(1� �)3
kuk22 (21)

For the second term of Eq. 16, according to Eq. 17,14,18,����e
T

s
M(↵)

@2P (↵)

@↵2
M(↵)r✓↵ |↵=0

����
����M(↵)

@2P (↵)

@↵2
M(↵)r✓↵ |↵=0

����
1

1

1� �

����
@2P (↵)

@↵2
M(↵)r✓↵ |↵=0

����
1

6kuk22
1� �

|M(↵)r✓↵ |↵=0|1

6kuk22

(1� �)2
|r✓↵ |↵=0|1

6M

(1� �)2
kuk22 (22)

For the third term of Eq. 16,����e
T

s
M(↵)

@P (↵)

@↵
M(↵)

@r✓↵
@↵

|↵=0

����
����M(↵)

@P (↵)

@↵
M(↵)

@r✓↵
@↵

|↵=0

����
1

1

1� �

����
@P (↵)

@↵
M(↵)

@r✓↵
@↵

|↵=0

����
1

2kuk2
1� �

����M(↵)
@r✓↵
@↵

|↵=0

����
1

2kuk2

(1� �)2

����
@r✓↵
@↵

|↵=0

����
1

4M

(1� �)2
kuk22 (23)

For the last term of Eq. 16,����e
T

s
M(↵)

@2r✓↵
@↵2

����
����M(↵)

@2r✓↵
@↵2

����
1

1

1� �

����
@2r✓↵
@↵2

����
1

6M

1� �
kuk22 (24)

Combining the four terms:�����
@2V̂ ⇡✓↵ (s)

@↵2
|↵=0

�����
✓
2�2

·
4M

(1� �)3
+ �

6M

(1� �)2
+ 2�

4M

(1� �)2
+

6M

1� �

◆
kuk22

8M

(1� �)3
kuk22 (25)

18

Under review as a conference paper at ICLR 2021

which implies that for all y 2 R
SA and ✓:�����y

T
@2V̂ ⇡✓ (s)

@✓2
y

����� =

�����

✓
y

kyk2

◆T @2V̂ ⇡✓ (s)

@✓2

✓
y

kyk2

◆����� kyk
2
2

 max
kuk2=1

�����

*
@2V̂ ⇡✓ (s)

@✓2
u, u

+����� kyk
2
2

= max
kuk2=1

�����

*
@2V̂ ⇡✓↵ (s)

@✓2
↵

|↵=0
@✓↵
@↵

,
@✓↵
@↵

+����� kyk
2
2

= max
kuk2=1

�����
@2V̂ ⇡✓↵ (s)

@↵2
|↵=0

����� kyk
2
2

8M

(1� �)3
kyk22 (26)

Denote ✓⇠ = ✓ + ⇠(✓0 � ✓), where ⇠ 2 [0, 1], according to Taylor’s theorem,�����V̂
⇡✓0 (s)� V̂ ⇡✓ (s)�

*
@V̂ ⇡✓ (s)

@✓
, ✓0 � ✓

+����� =
1

2

�����(✓
0
� ✓)T

@2V̂ ⇡✓⇠ (s)

@✓2
⇠

(✓0 � ✓)

�����

4M

(1� �)
k✓0 � ✓k22 (27)

Lemma 5 (Smoothness). H(⇢,⇡✓) is
4+8 logA

(1��)3 -smooth, where A = |A| is the total number of

actions.

Lemma 6 (Soft Policy Gradient). It holds that

@Ṽ ⇡✓ (µ)

@✓(s, a)
=

1

1� �
· d⇡✓

µ
(s) · ⇡✓(a|s) · Ã

⇡✓ (s, a) (28)

@Ṽ ⇡✓ (µ)

@✓(s, ·)
=

1

1� �
·d⇡✓

µ
(s)·H(⇡✓(a|s))·

h
Q̃⇡✓ (s, a)� ⌧ log ⇡✓(·|s)

i
=

1

1� �
·d⇡✓

µ
(s)·H(⇡✓(a|s))·

h
Q̃⇡✓ (s, a)� ⌧✓(s, ·)

i

(29)
where Ã⇡✓ (s, a) is the ’soft’ advantage function defined as: Ã⇡✓ (s, a) = Q̃⇡✓ (s, a)�⌧ log ⇡✓(a|s)�
Ṽ ⇡✓ (s), Q̃⇡✓ (s, a) = r(s, a) + ⌧ log �(a|s) + �

P
s
P(s0|s, a)Ṽ ⇡✓ (s0)

Lemma 7. d⇡✓
µ
(s) > (1� �)µ(s)

d⇡✓
µ
(s) = Es0⇠µ

"
(1� �)

1X

t=0

�tP (st = s|s0,⇡✓,P)

#

� Es0⇠µ [(1� �)P (st = s|s0)]

= (1� �)µ(s)

Lemma 8 (Non-uniform Lojasiewicz). Suppose initial state distribution in the policy gradient al-

gorithm µ(s) > 0 for all state s 2 S
�����
@Ṽ ⇡✓ (µ)

@✓

�����
2

�

p
2⌧
p
S

·min
s

p
µ(s) ·min

s,a
⇡✓(a|s) ·

�����
d
⇡
⇤
⌧
⇢

d⇡✓
µ

�����

� 1
2

1

·

h
Ṽ ⇡

⇤
⌧ (⇢)� Ṽ ⇡✓ (⇢)

i 1
2

Lemma 9. Using the algorithm with soft policy gradient, we have inft�1 mins,a ⇡✓t(a|s) > 0

The augmented value function Ṽ ⇡✓ (⇢) is monotonically increasing following the gradient update
with proper ⌘ due to smoothness.

Ṽ ⇡✓ (⇢) is upper bounded as:

Ṽ ⇡✓t (⇢) =
1

1� �

X

s

d
⇡✓t
⇢ (s)

"
X

a

⇡✓t(a|s) · (r(s, a) + ⌧ log �(a|s)� ⌧ log ⇡✓t(a|s))

#

1

1� �

X

s

d
⇡✓t
⇢ (s) (M + ⌧ logA) (Because �

X

a

⇡✓t(a|s) log ⇡✓t(a|s) logA)

M + ⌧ logA

1� �
(30)

19

Under review as a conference paper at ICLR 2021

Ṽ ⇡✓ (⇢) is lower bounded as:

Ṽ ⇡✓t (⇢) =
1

1� �

X

s

d
⇡✓t
⇢ (s)

"
X

a

⇡✓t(a|s) · (r(s, a) + ⌧ log �(a|s)� ⌧ log ⇡✓t(a|s))

#

�
1

1� �

X

s

d
⇡✓t
⇢ (s)(�M)(Because entropy function is positive)

�
�M

1� �
(31)

Q̃⇡✓ (s, a) is lower bounded as:
Q̃⇡✓t (s, a) = r(s, a) + ⌧ log �(a|s) + �

X

s0

P(s0|s, a)Ṽ ⇡✓t (s0)

� �M �
�

1� �
M �

�M

1� �
(32)

According to monotone convergence theorem, Ṽ ⇡✓ (⇢) converges to a finite value, ⇡✓t(a|s) !
⇡✓1(a|s). For any state s 2 S , define the following sets: A0(s) = {a : ⇡✓1(a|s) = 0},
A+(s) = {a : ⇡✓1(a|s) > 0}. We prove that A0(s) = ; by contradiction.

Suppose that 9s 2 S ,such that A0(s) is non-empty. For any a0 2 A0(s), we have ⇡✓t(a0|s) !
⇡✓1(a0|s) = 0, which implies � log ⇡✓t(a0|s) ! 1. There exists t0 > 0, such that 8t � t0,
� log ⇡✓t(a0|s) �

2M+⌧ logA

⌧(1��) .

According to Lemma 6, 8t � t0:
@Ṽ ⇡✓t (µ)

@✓(s, a0)
=

1

1� �
· d
⇡✓t
µ (s) · ⇡✓t(a0|s) · Ã

⇡✓t (s, a0)

=
1

1� �
· d
⇡✓t
µ (s) · ⇡✓(a0|s) ·

h
Q̃⇡✓t (s, a0)� ⌧ log ⇡✓t(a0|s)� Ṽ ⇡✓t (s)

i

�
1

1� �
· d
⇡✓t
µ (s) · ⇡✓(a0|s) ·

�M

1� �
� ⌧ log ⇡✓t(a0|s)� Ṽ ⇡✓t (s)

�

�
1

1� �
· d
⇡✓t
µ (s) · ⇡✓(a0|s) ·

�M

1� �
+ ⌧

2M + ⌧ logA

⌧(1� �)
�

M + ⌧ logA

1� �

�

� 0 (33)
This means ✓t(s, a0) is always increasing 8t � t0, which implies that ✓1(s, a0) is lower bounds by
a constant c, and thus exp{✓1(s, a0)} � ec > 0. According to ⇡✓1(a0|s) = exp{✓1(s,a0)}P

a exp{✓1(s,a)} =

0, we have
P

a
exp{✓1(s, a)} = 1. On the other hand, for any a+ 2 A+(s), according to

⇡✓1(a+|s) =
exp{✓1(s,a+)}P
a exp{✓1(s,a)} > 0, we have exp{✓1(s, a+)} = 1, 8a+ 2 A+(s), which impliesP

a+2A+(s) ✓1(s, a+) = 1. Note that 8t,the summation of logit incremental over all actions is
zero.

X

a

@Ṽ ⇡✓t (µ)

@✓t(s, a)
=

X

a02A0(s)

@Ṽ ⇡✓t (µ)

@✓t(s, a0)
+

X

a+2A+(s)

@Ṽ ⇡✓t (µ)

@✓t(s, a+)

=
1

1� �
· d
⇡✓t
µ (s) ·

X

a

⇡✓t(a|s)Ã
⇡✓t (s, a) = 0 (34)

8t � t0,
P

a02A0(s)
@Ṽ

⇡✓t (µ)
@✓t(s,a0)

� 0, then
P

a+2A+(s)
@Ṽ

⇡✓t (µ)
@✓t(s,a+) 0. So

P
a+2A+(s) ✓1(s, a+) will

always decrease for all large enough t > t0. This is contradiction with
P

a+2A+(s) ✓1(s, a+) =1.
To this point, we have shown A0(s) = ; for any state s.

At the convergence point ⇡✓1(·|s), the gradient is zero. @Ṽ
⇡✓1 (µ)

@✓1(s,·) = 1
1�� · d

⇡✓1
µ (s) ·

H(⇡✓1(·|s))
h
Q̃⇡✓1 (s, ·)� ⌧ log ⇡✓1(·|s)

i
= 0. Because of Lemma 7, d⇡✓1

µ (s) > 0, for all

state s. Therefore H(⇡✓1(·|s))
h
Q̃⇡✓1 (s, ·)� ⌧ log ⇡✓1(·|s)

i
= 0. H(⇡✓1(·|s)) has eigenvalue 0

with multiplicity 1, and the corresponding eigenvector is c · 1 for some constant c 2 R. Therefore,

20

Under review as a conference paper at ICLR 2021

Q̃⇡✓1 (s, ·) � ⌧ log ⇡✓1(·|s) = c · 1, which is equivalent to ⇡✓1(·|s) = softmax(Q̃⇡✓1 (s, ·)/⌧).
Because ⌧ 2 ⌦(1) > 0, �M

1�� Q̃⇡✓1 (s, a) M+⌧ logA

1�� , we have ⇡✓1(a|s) 2 ⌦(1).

Since ⇡✓t(a|s)! ⇡✓1(a|s) > 0, there exists t0 > 0 such that 8t � t0, 0.9⇡✓1(a|s) ⇡✓t(a|s)
1.1⇡✓1(a|s), which means inft�t0 mins,a ⇡✓t(a|s) 2 ⌦(1).

inf
t�1

min
s,a

⇡✓t(a|s) = min{ inf
1tt0

min
s,a

⇡✓t(a|s), inf
t�t0

min
s,a

⇡✓t(a|s)} = min{⌦(1),⌦(1)} 2 ⌦(1)

Theorem 4. Suppose µ(s) > 0 for all state s. Using entropy regularized softmax policy gradient

algorithm with ⌘ = (1��)3
(8M+⌧(4+8 logA)) and ⇡✓1(a|s) 2 ⌦(1), 8(s, a),

Ṽ ⇡
⇤
⌧ (⇢)� Ṽ ⇡✓ (⇢)

k1/µk1
exp{C⌧ · ⌦(1) · t}

·
M + ⌧ logA

(1� �)2

for all t > 0, where C⌧ ,⌦(1) > 0 are independent with t.

According to the soft sub-optimality lemma,

Ṽ ⇡
⇤
⌧ (⇢)� Ṽ ⇡✓t (⇢) =

1

1� �

X

s

⇥
d
⇡✓t
⇢ (s) · ⌧ ·DKL(⇡✓t(·|s)k⇡

⇤
⌧
(·|s))

⇤

=
1

1� �

X

s

d
⇡✓t
⇢ (s)

d
⇡✓t
µ (s)

⇥
d
⇡✓t
µ (s) · ⌧ ·DKL(⇡✓t(·|s)k⇡

⇤
⌧
(·|s))

⇤

1

1� �

X

s

1

(1� �)µ(s)

⇥
d
⇡✓t
µ (s) · ⌧ ·DKL(⇡✓t(·|s)k⇡

⇤
⌧
(·|s))

⇤

1

(1� �)2
k
1

µ
k1

X

s

⇥
d
⇡✓t
µ (s) · ⌧ ·DKL(⇡✓t(·|s)k⇡

⇤
⌧
(·|s))

⇤

1

1� �
k
1

µ
k1

h
Ṽ ⇡

⇤
⌧ (µ)� Ṽ ⇡✓t (µ)

i
(35)

Because of the property of smoothness, Ṽ ⇡✓ (µ) = V̂ ⇡✓ (µ) + ⌧H(µ,⇡✓) is �-smooth with � =
8M+⌧(4+8 logA)

(1��)3 .

Denote �̃t = Ṽ ⇡
⇤
⌧ (µ)� Ṽ ⇡✓t (µ),

�̃t�1 � �̃t = Ṽ ⇡✓t (µ)� Ṽ ⇡✓t+1 (µ)

 �

*
@Ṽ ⇡✓t (µ)

@✓t
, ✓t+1 � ✓t

+
+

4M + ⌧(2 + 4 logA)

(1� �)3
k✓t+1 � ✓tk

2
2

=

✓
�⌘ +

4M + ⌧(2 + 4 logA)

(1� �)3
· ⌘

◆�����
@Ṽ ⇡✓t (µ)

@✓t

�����

2

2

= �
(1� �)3

16M + ⌧(8 + 16 logA)

�����
@Ṽ ⇡✓t (µ)

@✓t

�����

2

2

(Because ⌘ =
(1� �)3

8M + ⌧(4 + 8 logA)
)

 �
(1� �)3

16M + ⌧(8 + 16 logA)
·
2⌧

S
·min

s
µ(s) ·

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

d
⇡✓t
µ

�����

�1

1

·

h
Ṽ ⇡

⇤
⌧ (µ)� Ṽ ⇡✓t (µ)

i

 �
(1� �)3

(8M/⌧ + 4 + 8 logA) · S
·min

s
µ(s)

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

(1� �)µ

�����

�1

1

· �̃t(Because d
⇡✓t
µ (s) � (1� �)µ(s))

 �
(1� �)4

(8M/⌧ + 4 + 8 logA) · S
·min

s
µ(s) ·

inf
t�1

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

µ

�����

�1

1

· �̃t (36)

21

Under review as a conference paper at ICLR 2021

inft�1 mins,a ⇡✓t(a|s) 2 ⌦(1) is independent with t.

�̃t

2

41� (1� �)4

(8M/⌧ + 4 + 8 logA) · S
·min

s
µ(s) ·

inf
t�1

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

µ

�����

�1

1

3

5 �̃t�1

 exp

8
<

:�
(1� �)4

(8M/⌧ + 4 + 8 logA) · S
·min

s
µ(s) ·

inf
t�1

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

µ

�����

�1

1

9
=

; �̃t�1

 exp

8
<

:�
(1� �)4

(8M/⌧ + 4 + 8 logA) · S
·min

s
µ(s) ·

inf
t�1

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

µ

�����

�1

1

(t� 1)

9
=

; �̃1

 exp

8
<

:�
(1� �)4

(8M/⌧ + 4 + 8 logA) · S
·min

s
µ(s) ·

inf
t�1

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

µ

�����

�1

1

(t� 1)

9
=

;
M + ⌧ logA

1� �

(37)

Thus

Ṽ ⇡
⇤
⌧ (µ)�Ṽ ⇡✓t (µ) exp

8
<

:�
(1� �)4

(8M/⌧ + 4 + 8 logA) · S
·min

s
µ(s) ·

inf
t�1

min
s,a

⇡✓t(a|s)

�2
·

�����
d
⇡
⇤
⌧

µ

µ

�����

�1

1

(t� 1)

9
=

;
M + ⌧ logA

1� �

Ṽ ⇡
⇤
⌧ (⇢)� Ṽ ⇡✓t (⇢)

1

1� �
k
1

µ
k1

h
Ṽ ⇡

⇤
⌧ (µ)� Ṽ ⇡✓t (µ)

i

k1/µk1

exp{C⌧ · [inft�1 mins,a ⇡✓t(a|s)]
2
· t}

·
M + ⌧ logA

(1� �)2
(38)

where C⌧ = (1��)4
(8M/⌧+4+8 logA)·S ·mins µ(s) ·

����
d
⇡⇤
⌧

µ

µ

����
�1

1

22

Under review as a conference paper at ICLR 2021

0 200 400 600 800 1000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

V
π θ

i (ρ
)

constant τ 1
constant τ 0.1
constant τ 0.01
constant τ 0.001
constant τ 0
continuation

Figure 5: Left: visualization of the behavior policy and the dataset collected from the behavior policy. Right:
learning curve of the value of the parameterized policy ⇡✓i at each iteration i.

C EXPERIMENTAL DETAILS

C.1 GRID WORLD

We design the grid world of size 9 ⇥ 9. The action space includes actions: up, down, left, right.
The reward is 0 at most states, while there are positive rewards 0.9 and 1 at two terminal states.
In each episode, the agent starts from the state in the center annotated with ’S’, walks around the
environment, and terminates the episode only when the agent visits any of the four terminal states
(yellow squares at the edge of the grid work). As explained in Section 3.3, we study the performance
of soft policy iteration algorithm with different value of ⌧ . The behavior policy is mediocre and
tends to move left and down with higher probability at each state. We collect 10000 transitions in
the domain according to the behavior policy . We visualize the behavior policy in Fig. 5. In each
state, the length of the arrow is proportional to the probability of taking the actions in four directions.
We also visualize the visitation count of each state in the collected dataset. The darker color means
more visitation. We can see the behavior policy mostly move around the left bottom corner.

We consider optimizing Ṽ ⇡,⌧ (⇢) with different value of ⌧ . It could be constant value in
{1, 0.1, 0.01, 0.001, 0}. For the continuation method, we initially set the value of ⌧ as 1, and de-
cay it with ⌧ 0.1⌧ at every 100 iteration. We search the hyper-parameter of learning rate in
{5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. The learning curves in Fig. 5 verify that the continuation
method has better performance than the baselines with a fixed constraint. Visualization of the learned
policies for different methods is in Fig. 2. With a constant ⌧ = 1, the learned policy performs simi-
larly to the behavior policy. With a constant ⌧ = 0.001, the learned policy crashes because the value
estimate is noisy. With decaying value of ⌧ , the error in Q value estimate is reduced and the relaxing
constraint allows the agent to deviate much from the behavior policy.

C.2 MUJOCO

As mentioned in the main paper, the architecture of the critic network and the policy network is kept
the same in the baselines and our method. The critic network consists of 4 independent Q–networks,
which share the same feedforward network architecture. The state and action are concatenated and
then passed through 2 hidden layers of size 400 and 300. The policy network is a simple linear
network, with the input and output corresponding to the state and the action respectively. ReLU is
used as the activation function in all hidden layers. We use 2 separate Adam optimizers for policy
and critic network learning and the learning rates are set to 10�3. For all the baselines, we do a grid
search of their algorithm–specific hyper–parameters for each game and each dataset. This parameter
is fixed in 5 independent runs.

C.2.1 CONTINUOUS BCQ

For continuous BCQ, we mostly follow their official implementation2 and hyper–parameter settings.
BCQ uses a perturbation model to adjust the action output with an added residual, which is in the
range of [��, �]. We do a grid search of the max perturbation � over {0.1, 0.2, 0.3}.

2https://github.com/sfujim/BCQ

23

https://github.com/sfujim/BCQ

Under review as a conference paper at ICLR 2021

Figure 6: Learning curves of average reward over 5 runs on Mujoco tasks. The shaded area with light color
indicates the standard deviation of the reward. For our continuation method, we can find the well-trained
policy checkpointed before the policy evaluation becomes noisy. Therefore, the performance of our method
outperforms or is comparable with the baselines.

C.2.2 BEAR

For BEAR, we also follow the official implementation3. In BEAR, a threshold ✏ is used to constrain
the MMD distance between the unknown behaviour policy � and the target policy ⇡. It is set to
be 0.05 in the original experiments. We instead do a grid search of ✏ over {0.05, 0.1, 0.2}. BEAR
also uses a VAE network to generate actor with distribution similar as the unknown behavior policy.
We keep the same architecture as their implementation for VAE and use an Adam optimizer with
learning rate 10�3

3https://github.com/aviralkumar2907/BEAR

24

https://github.com/aviralkumar2907/BEAR

Under review as a conference paper at ICLR 2021

C.2.3 ABM+SVG

For ABM, we use the batch size of 100, target network update period 1. The KL divergence between
the learned policy and the prior policy is constrained by ✏ in ABM, which is set to 0.2 for SVG in
the original work. We do a grid search of ✏ over {0.05, 0.1, 0.2}. For the additional prior policy
network, we also use an Adam optimizer with learning rate 10�3.

C.2.4 CRR

In CRR training, we use the batch size of 128, target network update period 1. We use 4 samples to
compute the advantage as the original paper does. For fair comparison, we keep the critic architec-
ture the same as others, instead of the distributional one. We focus on the ’mean exp’ variant of CRR,
because it performs well in CRR paper, while another variant ’max binary’ is roughly equivalent to
ABM+SVG, which we have run as a separate baseline. To decide on the appropriate temperature in
the scalar function f , we swept � over {0.01, 0.1, 1, 10}, where � is fixed as 1 in the original paper.

C.2.5 CONSTANT KL

To compare with the cases that there’s no decay of the KL weight in our method, we set KL weight
to be 10, 1, 0.1 separately and fix the decay to be 1. We run this method on the dataset with ↵ = 0.6
on all three games.

C.2.6 OURS

Initially in the first J iterations we learn behavior policy � from the data and train the target policy
⇡✓ only minimizing KL divergence between ⇡✓ and � . To find the well-trained policy with good
performance before the value estimate becomes quite noisy, we record the variance in Q estimate
var(Q⇡✓i) for each update i. In each run, we calculate the average of the variance in 1000 iterations
at the end of behavior cloning, i.e. x = 1

1000

P
J�1
i=J�1000 var

⇡✓i (Q). This is a reference point of
the Q variance for this run. As training continues, at the iteration j, we monitor the average of Q
variance in the most recent 1000 iterations y = 1

1000

P
j�1
i=j�1000 var(Q

⇡✓i). If the average of Q
variance is larger than 1.5 times the reference point, i.e. y

x
> 1.5, the current value of ⌧ may be not

reliable and we report the score of policy checkpointed with the previous value of ⌧ . Until the end
of training, if we always have y

x
 1.5, then we find the policy iteration is stable and we report the

final performance of the trained agent.

For our continuation method, accross the different datasets, we set most hyper-parameters the same.
For the first J = 500K updates, we train the policy network with only KL divergence loss to conduct
behavior cloning, which is equivalent to the case that ⌧ ! 1. We set the decay rate � = 0.9 and
decay the weight KL term with ⌧ �⇤⌧ for every I = 10000 updates. We conduct hyper-parameter
search over the initial value of ⌧ in the set {10000, 1000, 100}.

C.3 ATARI

To generate the dataset D for the Atari games, we train the DQN agents using the standard online
procedure to 10 million timesteps on the environment with sticky action. To generate the trajectory,
with probability of 0.8, we uses ✏-greedy with noise ✏ = 0.2 for the whole episode to take actions.
With probability of 0.2, we use the noise ✏ = 0.001 for the whole trajectory. As explained in [13],
we can ensure the dataset includes trajectories reaching the good performance of the DQN agent as
well as trajectories with exploratory behavior.

C.3.1 DISCRETE BCQ

We refer to the official implementation of discrete BCQ[13], training the the behavioral policies,
generating datasets and training the BCQ model. The 84 ⇥ 84 ⇥ 3 RGB image is fed into a con-
volutional neural network. The input image first goes through an 8 ⇥ 8 convolution with 32 filters
and stride 4, then a 4 ⇥ 4 convolution with 64 filters and 2 stride, followed by a 3 ⇥ 3 convolution
with 64 filters and 1 stride, with ReLU activations. There are 2 heads, each being a fully connected
layer, for Q–network output and generative model output after the convolutional neural network.

25

Under review as a conference paper at ICLR 2021

Both fully connected layers have hidden size 512 and use the ReLU activation. The convolutional
neural network is shared between the Q–network and the generative model. A final softmax layer is
used after the output of the generative model to recover the probability for each action. We search
of BCQ threshold over [0.1, 0.3, 0.5] to find the best parameter for each game. We use the same
hyper–parameter as the original implementation for training and only change the evaluation ✏ in the
testing time to keep consistent with other baselines and our method.

C.3.2 REM

For REM training, we completely follow the implementation from the official codebase4 released
by [2]. The architecture is exactly the same as [2] while the dataset is from a single behavior policy.
shared with discrete BCQ and our method. We use the multi-head architecture with 200 heads and
do not change any hyper parameter.

C.3.3 OURS

In our method, we also use an ensemble critic network as we do in Mujoco. The architecture of
each Q-network in the critic network is the same as the Q-network architecture used by discrete
BCQ, with a 3–layer convolution and a fully connect layer. The policy network also uses the same
architecture.

For the first J = 500K updates, we train the policy network with only KL divergence loss to conduct
behavior cloning, which is equivalent to the case that ⌧ !1. We set initial weight of the KL term
as 1, the decay rate � = 0.9 and decay the weight KL term with ⌧ � ⇤ ⌧ for every I = 100000
updates. We pick the learned policy with a reasonable value of ⌧ using the same way as in Mujoco
experiment.

C.4 RECOMMENDER

Here we explain more details about the experiments for a softmax recommender. In the MovieLen-
10M, the rating is of 5-score. Similarly to [23], we view the scores 4 or 5 as positive feed-
back from users but the ratings less than 4 as negative feedback. In the bandit setting, the ex-
pected return of the policy ⇡ can be expressed as V ⇡(⇢) = Es⇠⇢,a⇠�(·|s)(

⇡(a|s)
�(a|s)r(s, a)). So we

do not use the critic network to estimate the soft Q value. We convert the objective Ṽ ⇡,⌧ (⇢) to
Es⇠⇢,a⇠�(·|s)(

⇡(a|s)
�(a|s)r(s, a))� ⌧Es⇠⇢KL(⇡(·|s)|�(·|s)) in the bandit setting. Here the initial state

distribution should be sampling the users randomly from the dataset, and we set the objective func-
tion as JOurs(✓) =

1
N

P
N

i=1

h
⇡✓(ai|si)
�(ai|si) ri � ⌧KL(⇡✓(·|si)|�(·|si))

i
.

The architecture of the simulator, the behavior policies and target policy are the same as intro-
duced in [23]. The simulator is trained with all 1 million records of (user, movie, feedback) in the
MovieLen-1M dataset. We train the behavior policy with 500, 5000, 10000 samples respectively
to get the behavior policy with different performance. Then 6040 users in Movie-Len dataset, the
movie can be selected from the behavior policy, and the simulator outperforms the feedback. If the
behavior policy recommends 5 movies out of the 3900 choices for each user, we have a dataset D
with around 30,000 samples. If the behavior policy recommend 10 movies for each user, we have a
dataset D with around 60,000 samples

With the generated datasets of different sizes and different qualities, we train the target policy ⇡✓
using three methods: ’Cross-Entropy’, ’IPS’ and ’Ours’. The objective functions are optimized for
400 epochs, with Adagrad optimizer and the learning rate 0.05 and the batch size 256. For our
continuation method, the value of ⌧ is initialized as 1 and decay with the rate � = 0.9 in every
epoch. The users in MovieLens-1M dataset are split into validation set (2000 users) and test set
(4040 users). In each epoch, we measure the precision at 10 for the learned policy on the validation
set. We take the policy achieving best performance on the validataion set during training, and test it
for the held out users to report the performances in Table 3.

4https://github.com/google-research/batch_rl

26

https://github.com/google-research/batch_rl

